

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS
 KMA 303: INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

Date:
Time:

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS QUESTION ONE (30 MARKS)
a) By eliminating the constants, A and B find the differential equation whose solution is;

$$
\begin{equation*}
y=A e^{2 x}+B e^{-3 x}, \tag{4Marks}
\end{equation*}
$$

b) State the Order and the degree of a differential equation;

$$
\begin{equation*}
5\left(\frac{d^{4} b}{d p^{4}}\right)^{5}+56\left(\frac{d b}{d p}\right)^{10}+b^{7}=p \tag{2Marks}
\end{equation*}
$$

c) Verify that $y=3 e^{-2 x}+4 e^{x}$ is solution of the equation;

$$
\begin{equation*}
\frac{d^{3} y}{d x^{3}}-3 \frac{d y}{d x}+2 y=0 \tag{5Marks}
\end{equation*}
$$

d) Using separation of variable technique to solve;

$$
\begin{equation*}
\left(x^{2}+1\right) y^{\prime}+y^{2}+1=0 \tag{4Marks}
\end{equation*}
$$

e) Determine whether the equation $2 x y d y+\left(x^{2}+y^{2}\right) d y=0$ is exact. Hence, solve it.
f) Solve the differential equation using method of variation of parameters.

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x^{2}} \tag{5Marks}
\end{equation*}
$$

g) Radium decays at a rate proportional to the amount present at any time. If the half-life of radium is 6 years, determine the amount present after t years if the initial amount is M_{0}.

QUESTION TWO (20 MARKS)

a) Find a differential equation associated to a circle of radius 3 , and centre (a, b).
b) A copper ball is heated to a temperature of $100^{\circ} \mathrm{C}$. Then at time $t=0$ it is placed in water which is maintained at a temperature of $30^{\circ} \mathrm{C}$. At the end of 3 minutes the temperature of the ball is reduced to $70^{\circ} \mathrm{C}$. Find the time at which the temperature of the ball is reduced to $31^{\circ} \mathrm{C}$.
c) Solve the inhomogeneous differential equation $(x+2 y+1) d x+(4 x+8 y+6) d y=0$.

QUESTION THREE (20 MARKS)

a) Solve the following differential equation;

$$
\begin{equation*}
y^{\prime}=\frac{x^{2}+y^{2}}{x y} \tag{5Marks}
\end{equation*}
$$

b) Find the particular solution of $3 x y^{\prime}-y=\operatorname{In} x+1$ for $x>0$ satisfying $y(1)=-2$ by the method of integrating factor.
c) Find the orthogonal trajectory of the family of curves $x^{2}-y^{2}=c x$.

QUESTION FOUR (20 MARKS)

a) Solve the Bernoulli's differential equation $\frac{d y}{d x}+y=x y^{4}$
b) Find the particular solution of the homogenous differential equation;

$$
\begin{equation*}
\frac{d^{3} y}{d x^{3}}-3 \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-y=0 \text { given that } y(0)=1, y^{\prime}(0)=-7 \text { and } y \text { left }(0 \text { right })=- \tag{6Marks}
\end{equation*}
$$

c) Solve the linear system;

$$
\begin{gather*}
x^{\prime}=-x+6 y \\
y^{\prime}=x-2 y \tag{9Marks}
\end{gather*}
$$

Given $x(0)=2, y(0)=0$.

QUESTION FIVE (20 MARKS)

a) Find the general solution of the differential equation;

$$
\begin{equation*}
\left(D^{5}-D^{4}-D^{3}-D^{2}+4 D-2\right) y=0 . \tag{5Marks}
\end{equation*}
$$

b) The population of Mwihoko shopping center at any time t given by $N(t)$ is assumed to satisfy the logistic growth law;

$$
\frac{d N}{d t}=\frac{1}{800} N(1200-N)
$$

Show that $\quad N(t)=\frac{12000}{1+c e^{-15 t}}$.
(9 Marks)
c) Obtain the general solution of $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \quad$ using the method of undetermined coefficients.

