

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2016/2017 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: 15th August, 2016. Time: 8.30am – 10.30am

KMA 203 – PROBABILITY AND STATISTICS II

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

- a) State the following theorems;
 - i) Chebyshev Inequality .
 - ii) Laws of Large Numbers.
- b) Let X have the probability density function;

$$f(x) = \begin{cases} \frac{x^2}{9} & 0 < x < 3\\ 0 & elsewhere \end{cases}$$

Find the probability density function of $Y = X^3$ using the cumulative distribution function technique.

c) Consider the joint probability distribution given by;

$$f(x, y) = \begin{cases} \frac{x + 2y}{18}, & x = 1, 2; \ y = 1, 2\\ 0, & elsewhere \end{cases}$$

i) Construct the joint probability distribution table of *X* and *Y*.

(5 Marks)

(5 Marks)

(2 Marks)

(2 Marks)

ii) Find $P[(X,Y) \in A] = P(X+Y \le 3)$

(4 Marks)

d) Let X and Y be two independent random variables with identical probability density function given by;

 $f(x) = \begin{cases} e^{-x} & \text{for } x > 0\\ 0 & \text{elsewhere} \end{cases}$

What is the probability density function of $W = \max{X, Y}$?

e) If
$$X \sim F(3,8)$$
, find the mean and variance of X.

(6 Marks)

(6 Marks)

QUESTION TWO (20 MARKS)

a) Derive the moment generating function of a random variable X whose probability mass function is the binomial distribution with parameters n and p. Hence or otherwise derive the mean and variance of X using the moment generating function obtained.

(10 Marks)

b) Let *X* and *Y* have the bivariate density function;

$$f(x, y) = \begin{cases} \frac{1}{2}xy, & 0 < x < y < 4\\ 0, & \text{elsewhere} \end{cases}$$

Determine;

i) The conditional density of Y given
$$X = x$$
 (5 Marks)

ii)
$$E[Y/X=x]$$

QUESTION THREE (20 MARKS)

- a) State the Central Limit Theorem.
- b) Let \overline{X} denote the mean of a random sample of size n = 15 from the distribution whose probability distribution function is;

$$f(x) = \begin{cases} \frac{3}{2}x^2 & \text{if } -1 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Find μ and σ^2 . Hence compute the $P(0.05 \le \overline{X} \le 0.15)$

(8 Marks)

(5 Marks)

(2 Marks)

c) If X is an F-distributed random variable with m and n degrees of freedom. Show that $E[X] = \frac{n}{n-2} \quad \text{for } n > 2 \text{ . Hence if } X \sim F(9,10), \text{ find the mean of } X$ (10 Marks)

QUESTION FOUR (20 MARKS)

a) Given the probability distribution function of a Gamma distribution as;

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, 0 < x < \infty \\ 0, elsewhere \end{cases}$$

Obtain;

i) Moment generating function (10 Marks)

- b) Let X have a gamma distribution (given in part (a)) with $\beta = 2$ and $\alpha = r/2$, where r is a positive integer.
 - i) Write down the probability distribution function of X. (3 Marks)
 - ii) Mean and Variance. (2 Marks)

QUESTION FIVE (20 MARKS)

The joint probability of density of *X* and *Y* is;

 $f(x, y) = \begin{cases} k(5x + y), & 0 < x < 1, 0 < y < 1 \\ 0, & \text{elsewhere} \end{cases}$

a)	Find the value of k.		(3 Marks)
b)	Find; i)	E[X]	(3 Marks)
	ii)	E[Y]	(2 Marks)
	iii)	E[XY]	(2 Marks)
c)			(3 Marks)
	iv)	Var(X)	(3 Marks)
	v)	Var(Y)	(3 Marks)
	Correlation coefficient between X and Y .		(4 Marks)