Kasarani Campus
Off Thika Road
Tel. 2042692 / 3
P. O. Box 49274, 00100

NAIROBI
Westlands Campus
Pamstech House
Woodvale Grove
Tel. 4442212
Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR FIRST YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: $14^{\text {th }}$ December, 2023
Time: 8.30am-10.30am

KMA 103 - LINEAR ALGEBRA 1

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) Let A be the following 3×3 matrix.

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 3 & 2 \\
\beta & 6 & 2 \\
0 & 9 & 5
\end{array}\right]
$$

Determine the values of β so that the matrix A is non-singular.
b) Let W be the subset of \mathbb{R}^{3} defined by

$$
\mathrm{W}=x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in R: x_{1}=x_{2} \text { and } x_{3}=2 x_{1}+x_{2}
$$

Determine whether the subset W is a subspace of \mathbb{R}^{3} or not.
c) Let A be the coefficient matrix of the system of linear equations

$$
\begin{aligned}
& 2 x+4 y=-4 \\
& 5 x+4 y=11
\end{aligned}
$$

Solve the system by finding the inverse matrix A^{-1}.
d) Solve the following system of linear equations using Gauss elimination method

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=14 \\
& \quad x+4 y+7 z=30
\end{aligned}
$$

e) Determine if $S=\{(1,2,-3,1),(3,7,1,-2),(1,3,7,-4)\}$ is linearly independent or dependent.
f) Define the map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T x=A x$ where $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ -1 & -1 & 0 \\ -2 & -3 & 3\end{array}\right]$ and let $\mathrm{b}=\left[\begin{array}{c}3 \\ -3 \\ -1\end{array}\right]$.
i) Determine whether the vector b is in the Kernel of T.
(2 Marks)
ii) Determine the rank and nullity of T.
(4 Marks)
g) Solve the following system of linear equations using Cramer's Rule.

$$
\begin{align*}
& 5 x+7 y=3 \\
& 2 x+4 y=1 \tag{4Marks}
\end{align*}
$$

QUESTION TWO (20 MARKS)

a) Let $v_{1}=(1,2,1), v_{2}=(1,1,0), v_{3}=(2,1,2)$. Express $u=(0,1,-2)$ as linear combination of v_{1}, v_{2} and v_{3}.
b) Determine whether $S=\left\{3-2 t-5 t^{2}+t^{3}{ }_{,}-1+t^{3}, 3 t+5,4+2 t+t^{3}\right\}$ is a basis for \boldsymbol{P}_{3}.
c) Let $A=\left[\begin{array}{ccc}3 & -6 & 21 \\ -2 & 4 & -14 \\ 1 & -2 & 7\end{array}\right]$. Find the dimension of the solution space of $A x=0$.
(6 Marks)

QUESTION THREE (20 MARKS)

a) Use the inverse matrix to solve the following system of linear equations

$$
\begin{align*}
& x+2 y+2 z=5 \\
& 3 x-2 y+z=-6 \\
& 2 x+y-z=-1 \tag{8Marks}
\end{align*}
$$

b) Determine the row rank of $\mathrm{A}=\left[\begin{array}{cccc}1 & -2 & -1 & 4 \\ 2 & -4 & 3 & 5 \\ -1 & 2 & 6 & -7\end{array}\right]$
c) Consider the system of linear equations

$$
\begin{align*}
& x+h y=4 \\
& 3 x+6 y=8 \\
& x+y+k z=1 \tag{3Marks}
\end{align*}
$$

For what value(s) of h does this system of equations have
i) a unique solution?
ii) no solution?

QUESTION FOUR (20 MARKS)

a) Use Cramer's rule to solve for the following system
$2 x+y=7$
$-3 x+z=-8$
$y+24 z=-3$
(7 Marks)
b) For the following 3×3 matrix A , determine whether A is invertible and find the inverse A^{-1} if exists by computing the augmented matrix $[\mathrm{A} \mid \mathrm{I}]$, where I is the 3×3 identity matrix.

$$
A=\left[\begin{array}{ccc}
-2 & 2 & 0 \tag{7Marks}\\
2 & 1 & 3 \\
-2 & 4 & -2
\end{array}\right]
$$

c) Determine whether the following matrices are nonsingular or not.
i) $\quad \mathrm{A}=\left[\begin{array}{ccc}2 & 0 & -2 \\ 1 & 0 & -1 \\ 3 & 1 & 4\end{array}\right]$
(3 Marks)
ii) $\quad \mathrm{B}=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & -1 & -1\end{array}\right]$

QUESTION FIVE(20 MARKS)

a) Consider the homogeneous system
$x_{1}-3 x_{2}+x_{3}=0$
$2 x_{1}-6 x_{2}+2 x_{3}=0$
$3 x_{1}-9 x_{2}+3 x_{3}=0$
Find the basis and dimension of the solution space.
(7 Marks)
b) Define the map $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $\mathrm{Tx}=\mathrm{Ax}$ where $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & -3 & 1\end{array}\right]$
i) Find the kernel of the linear transformation T
ii) State the rank and the nullity of T.
c) For which choice(s) of the constant k is the following matrix invertible?

$$
\left[\begin{array}{ccc}
1 & 2 & k \\
3 & -1 & 1 \\
5 & 3 & 5
\end{array}\right]
$$

