

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR FIRST YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: 14th December, 2023 Time: 8.30am –10.30am

KMA 103 - LINEAR ALGEBRA 1

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

b)

a) Let A be the following 3×3 matrix.

	[1	3	2
A=	β	6	2
	lo	9	5

Determine the values of β so that the matrix A is non-singular. (3 Marks) Let W be the subset of \mathbb{R}^3 defined by

W=
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in R : x_1 = x_2 \text{ and } x_3 = 2x_1 + x_2$$

Determine whether the subset W is a subspace of \mathbb{R}^3 or not.

(3 Marks)

c) Let A be the coefficient matrix of the system of linear equations 2x + 4y = -4 5x + 4y = 11Solve the system by finding the inverse matrix 4^{-1}

Solve the system by finding the inverse matrix A^{-1} . (4 Marks)

d) Solve the following system of linear equations using Gauss elimination method

$$x + y + z = 6$$

$$x + 2y + 3z = 14$$

$$x + 4y + 7z = 30$$

(5 Marks)

e) Determine if $S = \{(1, 2, -3, 1), (3, 7, 1, -2), (1, 3, 7, -4)\}$ is linearly independent or dependent. (5 Marks)

- Define the map T: $\mathbb{R}^3 \to \mathbb{R}^3$ by Tx= Ax where A= $\begin{bmatrix} 1 & 2 & -3 \\ -1 & -1 & 0 \\ -2 & -3 & 3 \end{bmatrix}$ and let b= $\begin{bmatrix} 3 \\ -3 \\ -1 \end{bmatrix}$. f) i) Determine whether the vector b is in the Kernel of T.

 - Determine the rank and nullity of *T*. ii)

(2 Marks)

(4 Marks)

(7 Marks)

- Solve the following system of linear equations using Cramer's Rule. g) 5x + 7y = 32x + 4y = 1

(4 Marks)

QUESTION TWO (20 MARKS)

- Let $v_1 = (1, 2, 1), v_2 = (1, 1, 0), v_3 = (2, 1, 2)$. Express u = (0, 1, -2) as linear a) combination of v_1 , v_2 and v_3 . (7 Marks)
- Determine whether $S = \{3 2t 5t^2 + t^3, -1 + t^3, 3t + 5, 4 + 2t + t^3\}$ is a basis for P_3 . b)
- Let $A = \begin{bmatrix} 3 & -6 & 21 \\ -2 & 4 & -14 \\ 1 & -2 & 7 \end{bmatrix}$. Find the dimension of the solution space of Ax = 0. c) (6 Marks)

QUESTION THREE (20 MARKS)

a) Use the inverse matrix to solve the following system of linear equations x + 2y + 2z = 53x - 2y + z = -62x + y - z = -1. (8 Marks) Determine the row rank of A = $\begin{bmatrix} 1 & -2 & -1 & 4 \\ 2 & -4 & 3 & 5 \\ -1 & 2 & 6 & -7 \end{bmatrix}$ b) (6 Marks) c)

Consider the system of linear equations

x + hy = 43x + 6y = 8x + y + kz = 1.

For what value(s) of h does this system of equations have

- a unique solution? (3 Marks) i)
- no solution? ii) (3 Marks)

QUESTION FOUR (20 MARKS)

a) Use Cramer's rule to solve for the following system 2x + y = 7 -3x + z = -8y + 24z = -3

(7 Marks)

b) For the following 3×3 matrix A, determine whether A is invertible and find the inverse A^{-1} if exists by computing the augmented matrix [A|I], where I is the 3×3 identity matrix.

$$A = \begin{bmatrix} -2 & 2 & 0 \\ 2 & 1 & 3 \\ -2 & 4 & -2 \end{bmatrix}$$
(7 Marks)

c) Determine whether the following matrices are nonsingular or not.

i)
$$A = \begin{bmatrix} 2 & 0 & -2 \\ 1 & 0 & -1 \\ 3 & 1 & 4 \end{bmatrix}$$
 (3 Marks)

ii)
$$B = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & -1 & -1 \end{bmatrix}$$
 (3 Marks)

QUESTION FIVE(20 MARKS)

a)	Consider the homogeneous system $x_1 - 3x_2 + x_3 = 0$		
	$2x_1 - 6x_2 + 2x_3 = 0$		
	$3x_1 - 9x_2 + 3x_3 = 0$		
	Find the basis and dimension of the solution space.	(7 Marks)	
b)	Define the map T: $\mathbb{R}^3 \to \mathbb{R}^2$ by Tx= Ax where $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & -3 & 1 \end{bmatrix}$		
	i) Find the kernel of the linear transformation T	(4 Marks)	

ii)	State the rank and the nullity of T.	(4 Marks)

c) For which choice(s) of the constant k is the following matrix invertible?

[1	2	k
3	2 -1 3	1
15	3	5]

(5 Marks)