

Kasarani Campus Off Thika Road Tel. 2042692 / 3

P. O. Box 49274,

00100

NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY **UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR** FOURTH YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN

MATHEMATICS KMA 414: MEASURE THEORY AND PROBABILITY

Date:

Time:

INSTRUCTIONS TO CANDIDATES

ANS	SWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUES	STIONS
	ESTION ONE (30 MARKS)	
a)	Define the following terms;	
	i) σ field	(2 Marks)
	ii) Measurable function	(2 Marks)
	iii) Power sets	(2 Marks)
	iv) Measurable space	(2 Marks)
b)	Explain the condition under which a sequence of independent random variables said to be stable	
		(2 Marks)
c)	Distinguish between;	
	i) Finite measure and σ finite measure	(2 Marks)
	ii) Generalized probability measure and conditional probability measure	(2 Marks)
d)	Let X be a random variable with Bernoulli distribution. Define a standardized version of	
	X as S_{n^i} . State the central limit theorem using S_{n^i} . Hence or otherw	rise, give the pdf of
	$S_{n^{\iota}}$	
	(5 Marks)	
e)	Show that Lebesque outer measure is translation invariant.	(6 Marks)
f)	Show that φ and \Re are Lebesque measurable.	(5
	Marks)	

QUESTION TWO (20 MARKS)

Two fair dice are tossed. Let S be the sum of the outcomes. Define X as follows; a)

$$X = \begin{cases} 0, & \text{if } S < 6 \\ 1, & \text{if } 6 \le S < 10 \\ 2, & \text{Otherwise} \end{cases}$$

	iii) Give the pdf of X	(2 Marks)		
b)	Explain the following probability concepts;			
	i) Classical concept	(2 Marks)		
	ii) Limiting concept	(3 Marks)		
	iii) Axiomatic concept	(4 Marks)		
c)	Let $B \subset \mathbb{R}$, where \mathbb{R} is the set of real numbers. Show that the in σ -field	enverse of I_A is a		
QUE	(3 Marks) CSTION THREE (20 MARKS)			
a)	Let X be a random variable with a characteristic function $Q_x(t)$			
	i) Give the expression for $Q_x[t]$ in terms of trigonometric ratios. Identify the real and			
	imaginary parts	(2 Marks)		
	ii) Show that $Q_x(t)$ is continuous	(4 Marks)		
	iii) Show that for any characteristic function $Q_x(t)$			
	$4\operatorname{Re}\left[1-Q_{x}(t)\right] \geq \operatorname{Re}\left[1-Q_{x}(2t)\right]$	(4 Marks)		
b)	Show that a σ – i field is a monotone field and vice versa.	(6 Marks)		
c)	Distinguish between monotone increasing and monotone decreasing sequences. Hence or			
,	otherwise determine convergence of the sequence below;	•		
	$A_{n} = \left\{ w: 4 - \frac{1}{n} < w < 7 + \frac{3}{2n} \right\}$	(4 Marks)		
OUE	CSTION FOUR (20 MARKS)			
a)	Explain the meaning of the following;			
	i) Convergence in probabilityii) Convergence in distribution	(3 Marks) (3 Marks)		
b)	Let g an even non-decreasing and non-negative Borel function bet positive constant a , show that;	ween $[0, \infty)$. Then for a		
	$\frac{E[g(x)] - g(a)}{Sup \ g(x)} \le \Pr[X > a] \le \frac{E[g(x)]}{g(a)}$	(10.75.1.)		
c)	State and prove the mutual convergence theorem.	(10 Marks) (4 Marks)		
QUE	ESTION FIVE (20 MARKS)			
a)	Define stability of a random variable and use Chebychev's inequality to Law of Large Numbers. Hence or otherwise give the conditions for Bo Numbers.	<u> </u>		

(2 Marks)

(4 Marks)

i)

ii)

Give the sample space for the experiment

Obtain the inverse of X and hence the σ – \dot{c} field induced by X

- b) Let X_1, X_2, \ldots, X_n be independent Bernoulli random variables with parameter p. Define the central limit theorem. Hence or otherwise, give the Linderberg-Leivy form of central limit theorem. (4 Marks)
- c) Define the term Lebesque outer measure. Hence or otherwise, state and prove the ideal properties of Lebesque outer measure. (9 Marks)