

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATIONS, 2020/2021 ACADEMIC YEAR FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF BUSINESS INFORMATION TECHNOLOGY

KBI 2104 THEORY OF ALGORITHMS

Date: 18th December, 2020 Time: 8.30am – 10.30am

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS QUESTION ONE (30 MARKS)

- a) Define the following terms;
 - i) Data structure
 - ii) Abstract data structure
 - iii) Asymptotic algorithm analysis
 - iv) Algorithm

(4 Marks)

b) Convert the expression $((A + B) * C - (D - E) ^ (F + G))$ to equivalent Prefix and Postfix notations.

(6 Marks)

c) Draw the symbolic representation of the **stack** data structure after implementation of the following sequence of member function calls.

S.push(5); S.push(17); S.push(35); S.pop():

S.pop();

S.push(53);

S.push(35);

S.pop();

S.pop();

(4 Marks)

- d) Given the following scenarios, state and explain the most suitable ADT to use.
 - i) Maintaining a banks customer accounts where "accounts' updates" (deposits and withdrawals via ATMs) are more than "account additions and deletions" (account opening and closing).
 - ii) Maintaining the history of web sites visited in a browser.
 - iii) Checking if expression has the correct set of delimiters.

(5 Marks)

- e) Giving an example of application area in each case, briefly describe the following data structures
 - i) Queue
 - ii) Stack
 - iii) Priority queue

(6 Marks)

f) Explain two benefits and limitations of using arrays as form of implementing ADTs.

(4 Marks)

QUESTION TWO (20 MARKS)

- a) For a tree data structure and using a suitable diagram, briefly explain the following concepts.
 - i) Degree
 - ii) Level or depth of a node
 - iii) Leaf
 - iv) Child

(8 Marks)

- b) Describe the following algorithm design techniques.
 - i) Divide & conquer algorithm design
 - ii) Greedy algorithm algorithm design
 - iii) Dynamic programming

(9 Marks)

c) Give the advantages and disadvantages of both selection and bubble sort algorithms.

(3 Marks)

QUESTION THREE (20 MARKS)

- a) Given an array int LA() = $\{1,3,5,7,8\}$; Write the algorithms to:
 - i) Traverse the array
 - ii) Insert item = 10 in to the array
 - iii) Delete item at array index k = 3

(12 Marks)

b) With the help of diagrams, describe three types of linked lists.

(8 Marks)

QUESTION FOUR (20 MARKS)

a) Briefly describe the Binary Tree data structure.

(2 Marks)

b) Draw the binary search tree you get by inserting the following sequence into an initially empty tree:

(7 Marks)

- c) Conduct the following tree traversals.
 - i) Preorder traversal
 - ii) Inorder traversal
 - iii) Postorder traversal

(9 Marks)

d) Deduce the significance of constructing a BST and conducting an inorder traversal on it. (2 Marks)

QUESTION FIVE (20 MARKS)

a) Briefly explain five basic properties of an algorithm.

(5 Marks)

b) Consider a search for the key value 9 in the following array of size 15.

	3	5	6	8	9	11	12	14	17	20	28	29	33	36	42	
first=	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	=last

(i) Write a binary search algorithm.

(5 Marks)

(ii) Using diagrams, illustrate the process of locating key value 9 using binary search.

(10 Marks)