

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2016/2017 ACADEMIC YEAR SECOND YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: 16th August, 2016. Time: 8.30am – 10.30am

KMA 107 - INTRODUCTION TO NUMERICAL ANALYSIS

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a)	i) Convert the hexadecimal number $(2A7.3E2)_{16}$ to Denary number system.	
	ii) Convert (01111010000100100001), to have desired number system	(3 Marks)
	ii) Convert $(01111010000100100001)_2$ to hexadecimal number system.	(3 Marks)
b)	i) Convert $(39.B8)_{16}$ to octal.	
	ii) Divide 0.876543E-5 by 0.200000E-3.	(4 Marks)
	n) Diride 0.0703 151 2 69 0.2000001 5.	(3 Marks)
c)	Construct a forward difference table for the following values of x and y.	

х	0.1	0.3	0.5	0.7	0.9	1.1	1.3
У	0.003	0.067	0.148	0.248	0.37	0.518	0.697

(4 Marks)

- d) If Δ , δ denote the forward and central difference operators, E and μ respectively the shift operator and average operators, in the analysis of data with equal spacing *h*, prove that;
 - i) $E^{1/2} = \mu + \frac{\delta}{2}$.
 - ii) $\mu \delta = \frac{\Delta E^{-1}}{2} + \frac{\Delta}{2}.$

(4 Marks)

(3 Marks)

e) Find the real root of the equation $xe^x - 2 = 0$ correct to 2d.p, using Newton-Raphson method. (6 Marks)

QUESTION TWO (20 MARKS)

$$f(x) = x^3 - 5x + 1 = 0$$

(8 Marks) b) Find xy as accurate as possible given that $x = 3.55 \pm 0.005$ and $y = 2.73 \pm 0.005$. (7 Marks)

c) If E is the shift operator, prove that $E = e^{hD}$ where D is the differential operator d/dx, and h is the interval size.

QUESTION THREE (20 MARKS)

a) solve the equations;

x + 2y + z = 8 2x + 3y + 4z = 204x + 3y + 2z = 16

by Gauss-Jordan elimination method.

b) Find the approximate value of;

$$I = \int_0^\pi sinxdx$$

Using; i) Trapezoidal rule

ii) Simpson's $\frac{1}{3}$ – *rule* by dividing the range of integration into six equal parts.

QUESTION FOUR (20 MARKS)

- a) Prove the following relations
 - (i) $E \nabla \equiv \nabla E \equiv \Delta$ (4 Marks)
 - (ii) $(1 + \Delta)(1 \nabla) \equiv 1$ (3 Marks)
 - (iii) $(\Delta \nabla) \equiv \Delta \nabla$. (3 Marks)

b) Suppose that $x = \frac{5}{7}$ and $y = \frac{1}{3}$. Use five digit chopping for calculating x + y and $x \times y$.

QUESTION FIVE (20 MARKS)

a)	i)	Change $(245)_{10}$ to binary.	
			(3 Marks)
	ii)	Convert $(243)_8$ to hexadecimal.	
			(8 Marks)
b)	Giv		
	f(2)	f(3) = 27, f(4) = 78, f(5) = 169. Find the function $f(x)$	
			(9 Marks)

(8 Marks)

(5 Marks)

(10 Marks)