

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

# KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATION, 2020/2021 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: 10<sup>th</sup> December, 2020 Time: 11.30am – 1.30pm

## **KMA 202 - VECTOR ANALYSIS**

#### INSTRUCTIONS TO CANDIDATES

#### ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

#### **QUESTION ONE (30 MARKS)**

- a) If  $A = 3\mathbf{i} \mathbf{j} + 2\mathbf{k}$ ,  $B = 2\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ , and  $C = \mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ , find  $A \times (B \times C)$ .
- (3 Marks)
- b) Find the angles which the vector  $\mathbf{A} = 3\mathbf{i} 6\mathbf{j} + 2\mathbf{k}$  makes with x-axis.
- (4 Marks)
- c) Find the area of a triangle having vertices at P(1, 3, 2), Q(2, -1, 1) and R(-1, 2, 3).
- (4 Marks)

d) The acceleration of a particle at any time  $t \ge 0$  is given by

$$a = 12\cos 2t \, i - 8\sin 2t \, j + 16t \, k$$

- If the velocity v and displacement r are zero at t=0. Find v and r at any time. (3 Marks)
- e) If  $\phi = 2xyz^2$ ,  $F = xyi zj + x^2k$  and C is the curve  $x = t^3$ , y = 2t,  $z = t^2$  from t=0 to t=1, evaluate the line integral;
  - i)  $\int \phi dr$  (3 Marks)
  - ii)  $\int_{c} F \times dr$  (3 Marks)
- f) Determine a unit vector perpendicular to the plane of A = 2i 6j 3k and B = 4i + 3j k. (4 Marks)
- g) Evaluate  $\iiint_V (2x+y)dV$ , where V is the closed region bounded by the cylinder  $z=4-x^2$  and the planes x=0, y=0, y=2 and z=0. (6 Marks)

## **QUESTION TWO (20 MARKS)**

- a) A particle moves along a curve whose parametric equations are  $x = 2 \sin 3t$ ,  $y = 2 \cos 3t$ , z = 8t, where t is the time.
  - i) Determine its velocity and acceleration at any time. (3 Marks)
  - ii) Find the magnitudes of the velocity and acceleration (2 Marks)
- b) If  $\frac{d^2A}{dt^2} = 6t \ i 24 \ t^2j + 4 \sin t \ k$ , find A given that A = 2i + j and  $\frac{dA}{dt} = -i 3k$  at t = 0. (5 Marks)
- c) If  $A = 5t^2 + tj t^3k$  and B = i tj Find  $\frac{d}{dt}(A \times B)$ .

(5 Marks)

d) If  $\varphi(x, y, z) = xy^2z$  and  $A = xzi - xy^2j + yz^2k$ . find  $\frac{\partial^3}{\partial x^2\partial z}$  ( $\varphi A$ ) at the point (2,-1,1). (5 Marks)

## **QUESTION THREE (20 MARKS)**

a) If  $\emptyset(x, y, z) = 3x^2y - y^3z^2$ , find  $\nabla \emptyset$  at the point (1, -2, -1).

(5 Marks)

- b) Find an equation for the tangent plane to the surface  $xz^2 + x^2y = z 1$  at the point (1,-3,2).
- Find the angle between the surfaces  $x^2 + y^2 + z^2 = 9$  and  $z = x^2 + y^2 3$  at the point (2,-1,2). (5 Marks)
- d) Determine the directional derivative of  $\varphi = x^2yz + 4xz^2$  at (1,-2,-1) in the direction 2i j 3k (5 Marks)

# **QUESTION FOUR (20 MARKS)**

a) If  $A = xz^4i - 2x^3yz j + 2yz^2k$ , find curl A.

(5 Marks)

b) If  $F = (2x^2 - 3)i - 2xy j - 4x k$ , evaluate  $\iiint_V \nabla \times F dV$ , where V is the closed region bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.

(6 Marks)

- c) If  $A = (3x^2 + 6y)i 14yz j + 20 xz^2 k$ , evaluate  $\int_c A dr$  along the straight lines from (0,0,0) to (1, 1, 1).
- d) If  $F = 3xy \, \mathbf{i} y^2 \mathbf{j}$ , evaluate  $\int_c F \, dr$  where c is the curve in the xy-plane,  $y = 2x^2 \, \text{from}(0,0)$  to (1,2). (4 Marks)

# **QUESTION FIVE (20 MARKS)**

- a) State the Green's theorem and hence verify it in the plane for  $\oint_c (3x^2 + 8y^2)dx + (4y 6xy)dy$ , where C is the boundary of the region defined by  $y = \sqrt{x}$  and  $y = x^2$ . (7 Marks)
- b) Find the total work done in moving a particle in a force field given by  $F = 3xy \ i 5zj + 10x \ k$  along the curve  $x = t^2 + 1$ ,  $y = 2t^2$ ,  $z = t^3$  from t = 0 to t = 1.
- c) Given  $\emptyset = 2x^3y^2z^4$ . Find  $\nabla \cdot \nabla \emptyset$  (or div grad  $\emptyset$ ) at (1, -2, 1)

(5 Marks)

(5 Marks)

d) Find a unit vector parallel to the resultant of the vectors  $r_1 = 2i + 4j - 5k$ ,  $r_2 = i + 2j + 3k$  (3 Marks)