

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2016/2017 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: 16th August, 2016. Time: 11.00am – 1.00pm

KMA 202 – VECTOR ANALYSIS

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a)	Defin	e a vector quantity.		
			(2 Marks)	
b)	Find	the dot product of the vectors $\vec{A} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ and $\vec{B} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$		
			(3 Marks)	
c)	Find	the cross product of the vectors $\vec{A} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\vec{B} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$		
			(3 Marks)	
d)		An aeroplane travels 200km due west and then 150km 60° north of west. Determine the resultant displacement analytically.		
	-		(5 Marks)	
e)	Find	the the unit vector that is perpendicular to the plane formed by the vectors		
	$\overrightarrow{M} =$	$2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$ and $\vec{N} = 12\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$		
			(4 Marks)	
f)	Find the work done by a particle along the curve $y = 4x^2$ from (0,0) to (1,4) given the form			
		$2x^2$ y i + 3xy j		
a)		solution in the vector $\vec{F} = xyz\mathbf{i} + 3x^2y\mathbf{j} + (xz^2 - y^2z)\mathbf{k}$		
g)	Calci	That the curl of the vector $T = xyz\mathbf{i} + 3x y\mathbf{j} + (xz - y z)\mathbf{k}$	(2 Mortes)	
h)	State	each of the following theorems;	(3 Marks)	
11)	State	State each of the following theorems,		
	i)	Greens theorem		
	,		(2 Marks)	
	ii)	Stokes theorem		
			(2 Marks)	
	iii)	Gauss (Divergence) theorem		
			(2 Marks)	

QUESTION TWO (20 MARKS)

a) Find the volume of a parellelopiped V, if
$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$
 given that
 $\mathbf{a} = 3\mathbf{i} + 7\mathbf{j} + 5\mathbf{k}$, $\mathbf{b} = -3\mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$ and $\mathbf{c} = 7\mathbf{i} - 5\mathbf{j} - 3\mathbf{k}$

b) Give the definition of an irrotational flow. A fluid motion is given by $\vec{V} = (y \sin z - \sin x)\mathbf{i} + (x \sin z + 2yz)\mathbf{j} + (xy \cos z + y^2)$. Is the motion irrotational? (6 Marks)

c) Using stokes theorem evaluate
$$\int_{c} \left[(2x - y)dx - yz^{2}dy - y^{2}zdz \right]$$
 where c is the circle $x^{2} + y^{2} = 1$

(5 Marks) d) Evaluate $\iint \vec{A} \bullet d\vec{r}$ around the closed region in the figure below if $\vec{A} = (x - y)\hat{i} + (x + y)\hat{j}$ (4Marks)

QUESTION THREE (20 MARKS)

a) A particle moves along a curve whose parametric equations are;

$$x = e^{-t}$$
, $y = 2\cos 3t$, $z = 3\sin 3t$
where *t* is time.
determine the velocity and acceleration at any time *t*.
(5 Marks)
b) If $\vec{A} = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$ and $\vec{B} = \sin t\hat{i} - \cos t\hat{j}$, find $\frac{d}{dt}(\vec{A} \cdot \vec{B})$

c) Find a unit tangent vector at the point t = 2 on the curve

$$x = t^{2} + 1$$
, $y = 4t - 3$, $z = 2t^{2} - 6t$ (5 Marks)

d) Find $\nabla \Phi$ at (1, -1, 2) where $\Phi = 2xz^2 - 3xy - 4x - 7$

(5 Marks)

(5 Marks)

(5 Marks)

QUESTION FOUR (20 MARKS)

- a) Using Greens Theorem evaluate $\int_{c} x^2 y dx + x^2 dy$ where c is for the boundary of a triangle with vertices (0,0), (1,0) and (1,1)
- b) Evaluate $\iiint_V (2x+y)dV$ where V is the closed region bounded by the cylinder $z = 4 x^2$ and the planes x = 0, y = 0, y = 2 and z = 0

(6 Marks)

c) Use the divergence theorem to evaluate $\iint \vec{F} \square ds$ where $\vec{F} = 4x\mathbf{i} - 2y^2\mathbf{j} + z^2\mathbf{k}$ and S is the surface bordering the region $x^2 + y^2 = 4$, z=0 and z=3

QUESTION FIVE (20 MARKS)

a) If
$$\vec{A} = xz^3\hat{i} + -2x^2yz\hat{j} + 2yz^4\hat{k}$$
, find $\nabla \times \vec{A}(i.e \ curl \ \vec{A})$ at the point (1,-1,1).
(6 Marks)

b) Find the area of a parallelogram having diagonals $\vec{A} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ and $\vec{B} = \mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$

c) If
$$\vec{A} = 4xz\hat{i} + -y^2\hat{j} + yz\hat{k}$$
 evaluate $\iint_{S} \vec{A} \cdot ndS$ where *S* is the surface of the cube bounded by $x = 0, x = 1, y - 0, y = 1, z = 0, z = 1.$ (8 Marks)

(6 Marks)