

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATION, 2020/2021 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: 18th December, 2020 Time: 8.30am – 10.30am

KMA 107 - INTRODUCTION TO NUMERICAL ANALYSIS

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) Convert the following numbers to the stated number system:

i) (39.*D*8)₁₆ to Octal form. (3 Marks)

ii) $(A421.125)_{12}$ to denary form (3 Marks)

iii) (9243.245)₁₀ to binary number system (3 Marks)

b) Prove the following results:

i) $\Delta \nabla \equiv \Delta - \nabla$ (3 Marks)

ii) $(1 + \Delta)(1 - \nabla) \equiv 1$ (3 Marks)

- c) F(x) is a polynomial in x with the following functional values; f(2)=f(3)=27, f(4)=78, f(5)=169. Find the function f(x). (4 Marks)
- d) Solve the following system of linear equations using Gauss-Jordan elimination method.

$$x + 2y + z = 8$$

 $2x + 3y + 4z = 20$
 $4x + 3y + 2z = 16$

(4 Marks)

e) Evaluate $\int_{-1}^{1} \sqrt{1+x^2}$ using Trapezoidal rule where h = 0.5

(3 Marks)

f) Given the following data, evaluate y at x = 0.6.

X	0.1	0.3	0.5	0.7	0.9	1.1	1.3
У	0.003	0.067	0.148	0.248	0.37	0.518	0.697

(4 Marks)

QUESTION TWO (20 MARKS)

- a) If Δ , ∇ denote the forward and backward difference operators, E in the analysis of data with equal spacing h, evaluate;
 - i) $\nabla^2 a b^{cx}$ (3 Marks)
 - ii) $\Delta^2(e^x)$ (3 Marks)
 - iii) $\Delta\left(\frac{5x+12}{x^2+5x+6}\right)$ taking h=1. (4 Marks)
- b) Suppose that $x = \frac{5}{7}$ and $y = \frac{1}{3}$. Use five digit arithmetic to approximate p + q and determine the absolute and relative errors using chopping method. (4 Marks)
- c) Divide 0.978760E-5 by 0.250000E-2
- d) Add 0.964572E3 and 0.586351E5. (3 Marks)

QUESTION THREE (20 MARKS)

- a) Convert the following numbers to the stated number system
 - i) **0.57926**₁₀ to duodecimal (3 Marks)
 - ii) 98792.76531₁₀ to octal form (3 Marks)
 - (iii) 768384.45726₁₀ to hexadecimal form (3 Marks)
 - (iv) 531.3456_{10} to binary form (3 Marks)
- b) (0111101000010010010010010)₂ to hexadecimal number system.
 - (4 Marks)
- c) Convert (110111101000010010010010)₂ to octal number system.

(4 Marks)

QUESTION FOUR (20 MARKS)

- a) Convert the following numbers into their denary equivalent
 - i) (263.4152)₈ (3 Marks)
 - ii) $(F896B.3C45)_{16}$ (3 Marks)

 - iv) $(896B.345)_{12}$ (3 Marks)
- b) Convert the following numbers to the stated number system;
 - i) $(4DA21.3386)_{16}$ to octal number system

(4 Marks)

ii) Convert (3745.625)₈ to hexadecimal number system.

(4 Marks)

(3 Marks)

QUESTION FIVE (20 MARKS)

a) A missile is launched from a ground station. The acceleration during its first 80 seconds of flight is recorded as given below.

t(s)	0	10	20	30	40	50	60	70	80
a(m/s ²)	30	31.63	33.34	35.47	37.75	43.33	43.25	46.69	50.67

Compute the velocity of the missile using Simpson's Rule.

(7 Marks)

b) Use Gaussian elimination method to solve the following system of equations

$$5x + 2y - z = 13$$
$$3x - 4y + z = 1$$

$$x + 2y - 3z = 7$$

(7 Marks)

c) Estimate the sales for 1966 using the following table:

Year	1931	1941	1951	1961	1971	1981
Sales	12	15	20	27	39	52

(6 Marks)