

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove

Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATION, 2020/2021 ACADEMIC YEAR THIRD YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS)

Date: 14th December, 2020 Time: 11.30am – 1.30pm

(3 Marks)

KMA 2304 - NUMBER THEORY

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS_

QUESTION ONE (30 MARKS)

a)	Explain with examples the meaning of the following terms as used in number theory		
	i) Natural numbers	(1 Mark)	
	ii) Rational numbers	(1 Mark)	
	iii) Composite numbers	(1 Mark)	
	iv) Integers	(1 Mark)	
b)	Show that if $\frac{d}{a}$ and $\frac{d}{b}$, then $\frac{d}{ra \pm sb}$		
		(4 Marks)	
c)	With an example show that every composite integer n	at every composite integer n has a prime p such that 1	
		(4 Marks)	
d)	For positive integers 654 and 381, show that $(654,381) = 3$		
		(4 Marks)	
e)	Prove that if $\frac{n}{ab}$ and n and a are coprime, then $\frac{n}{b}$		
		(5 Marks)	
f)	State the Wilson's theorem		
		(2 Marks)	
σ)	Solve for $x^2 + y^2 \approx 0 \pmod{3}$		

QUESTION TWO (20 MARKS)

a) Find all the right-angled triangles with integer sides and a perimeter of 240

(7 Marks)

b) Discuss the pell's equation hence solve $x^2 - 2y^2 = 1$

(8 Marks)

c) Find the GCD of the two numbers (37129,14659) using Euclidean algorithm.

(5 Marks)

QUESTION THREE (20 MARKS)

- a) If $a \cong b \pmod{m}$ and $c \cong d \pmod{m}$, show that $a \pm c \cong b \pm d \pmod{m}$ (4 Marks)
- b) Solve $x \cong 4 \pmod{21}$ and $x \cong 13 \pmod{30}$ simultaneously (6 Marks)
- c) Find the solutions of the linear Diophantine equation 109x + 87y = 50001 (6 Marks)
- d) By considering $f(x, y) \mod 4$ show that $f(x, y) = y^2 x^2 2 = 0$ has no solution.

(4 Marks)

QUESTION FOUR (20 MARKS)

a) Define pseudo-prime

(2 Marks)

b) State the Fermat's theorem hence show that if p is prime, then $2^p \cong 2 \pmod{p}$

(6 Marks)

c) Solve $3^x \cong 2 \pmod{11}$ and $3^x \cong 5 \pmod{11}$

(6 Marks)

d) Show that we cannot have 3 consecutive odd numbers other than 3,5,7 such that they are all prime. (6 Marks)

QUESTION FIVE (20 MARKS)

a) State Helly's theorem

(2 Marks)

b) Solve 3x - 5y + 7z = 12, 5x + 9y - 11z = 40 simultaneously

(8 Marks)

c) Show that $\sqrt{568}$ is a prime number

(5 Marks)

d) If a/b and c/d is it true that a+c/b+d.

(5 Marks)