

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212

Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2019/2020 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION BACHELOR OF SCIENCE IN COMPUTER SCIENCE

KCS 203 - ELECTRONICS

Date: 8th April, 2019 Time: 2.30pm – 4.30pm

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS

- a) Briefly describe the mechanism of electric conduction in:
 - i) Metals
 - ii) Conducting Liquids
 - iii) Vacuum (9 Marks)
- b) Describe the formation of the P –type extrinsic semiconductor material, using a clearly labeled diagram. (4 Marks)
- c) A 6.0V stabilized power supply is required to be produced from a 24V DC power supply input source. The maximum power rating P_{Zmax} of the Zener diode is 0.5W. Using the Zener regulator circuit Figure Q1c. (Assume diode resistance $R_D = 0\Omega$) calculate;
 - i) The total supply current I_S at full load.
 - ii) The diode current I_Z , if a load resistor of $5k\Omega$ is connected across the Zener diode.
 - iii) The minimum value of the series resistor, R_S

(9 Marks)

- d) Using both, a labeled block diagram, and a circuit diagram, describe the following configurations of a properly biased PNP bipolar junction transistor:
 - i) Common Base
 - ii) Common Emitter

(8 Marks)

QUESTION TWO (20 MARKS)

a) An instantaneous current, i=600 sin ωt mA flows through a pure resistance of 5 k Ω . Find the current value flowing and power dissipated in the resistor when $\omega t = 0.75\pi$ rad.

(10 Marks)

b) A transistor has $\alpha_{dc} = 0.85$. Calculate β_{dc} .

(6 Marks)

c) A transistor has the following currents: $I_B = 40 \text{ mA}$ and $I_C = 5 \text{ A}$. Calculate I_E .

(4 Marks)

QUESTION THREE (20 MARKS)

- a) Explain with the aid of a labeled diagram the use of a zener diode in a regulated dc power supply.

 (12 Marks)
- b) Describe the formation of the P-N junction depletion layer, using a clearly labeled diagram.

(8 Marks)

QUESTION FOUR (20 MARKS)

a) i) What is an operational amplifier (Op Amp)?

(4 Marks)

ii) State FOUR ideal characteristics of an Op Amp

- (4 Marks)
- b) In the non-inverting OP-AMP, Figure Q4, if $R_1=1.5$ k Ω , $R_f=1.5$ k Ω , calculate:
 - i) Voltage gain
 - ii) Output voltage if V_{in} = 100 mV

Figure Q 4

(12 Marks)

QUESTION FIVE (20 MARKS)

- a) In Fig.Q5a, Calculate the drain current, I_D , for the following values of V_{GS} (assume $V_{DS} \ge V_{DS(P)}$):
 - i) 0V,
 - ii) -0.5V,
 - iii) -1V

(12 Marks)

- b) Describe and show on same figure how the following breakdown mechanisms occur in p-n junctions:
 - i) Zener Effect.
 - ii) Avalanche Effect.

(8 Marks)