Kasarani Campus
Off Thika Road
Tel. 2042692 / 3
P. O. Box 49274, 00100

NAIROBI
Westlands Campus
Pamstech House
Woodvale Grove
Tel. 4442212
Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2016/2017 ACADEMIC YEAR THIRD YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: $8^{\text {th }}$ August, 2016.
Time: 11.00am - 1.00pm

KMA 311 - PARTIAL DIFFERENTIAL EQUATIONS I

INSTRUCTIONS TO CANDIDATES

ANSWER OUESTION ONE (COMPULSORY) AND ANY OTHER TWO OUESTIONS

QUESTION ONE (30 MARKS)
a) State the definition of a partial differential equation.
b) Show that the direction cosines of the tangent at the point (x, y, z) to the conic $a x^{2}+b y^{2}+c z^{2}=1, x+y+z=1$ are proportional to $(b y-c z, c z-a x, a x-b y)$
c) Find the integral curves of the sets of equations;

$$
\begin{equation*}
\frac{d x}{x z-y}=\frac{d y}{y z-x}=\frac{d z}{1-z^{2}} \tag{6Marks}
\end{equation*}
$$

d) Show that the orthogonal trajectories on the hyperboloid $x^{2}+y^{2}-z^{2}=1$ of conics in which it is cut by the system of planes $x+y=c$ are its curves of intersection with the surfaces $(x-y) z=k \quad$, where k is a parameter.
e) Verify that the equation $\left(y z+z^{2}\right) d x-x z d y+x y d z=0$ is integrable and find its primitive.
f) Eliminate the arbitrary function f from the equations

$$
\begin{equation*}
x+y+z=f\left(x^{2}+y^{2}+z^{2}\right) \tag{6Marks}
\end{equation*}
$$

QUESTION TWO (20 MARKS)

a) Find the general solution of the partial differential equations.

$$
x(x+y) p-y(x+y) q=(y-x)(2 x+2 y+z)
$$

(8 Marks)
b) Form partial differential equations by eliminating arbitrary constants from the following relations; $z=(x-a)^{2}+(y-b)^{2}$;
(4 Marks)
c) Verify that the following equations are integrable and find their solutions.

$$
\begin{equation*}
\left(x^{2} z-y^{3}\right) d x+3 x y^{2} d y+x^{3} d z=0 \tag{8Marks}
\end{equation*}
$$

QUESTION THREE (20 MARKS)

a) Find the equation of the integral surface of the differential equation
$2 y(z-3) p+(2 x-z) q=y(2 x-3)$
which pass through the circles $z=0, x^{2}+y^{2}=2 x$
b) Find the surface which intersects with the surfaces of the system $z(x+y)=c(3 z+1)$ orthogonally and which passes through the circle $x^{2}+y^{2}=1, z=1$.

QUESTION FOUR (20 MARKS)

a) Show that $x p-y q=x, x^{2} p+q=x z$ are compatible and find their solution.
(10 Marks)
b) Show that the Charpit's equations of the differential equation

$$
\left(q^{2}+1\right) z^{2}=2 p x z+x^{2}
$$

have an integral $q z=a x$ and find the corresponding complete integral of the equation.
(10 Marks)

QUESTION FIVE (20 MARKS)

Use Cauchy's method of characteristics to find the solution of the equation

$$
z=\frac{1}{2}\left(p^{2}+q^{2}\right)+(p-x)(q-y) \text { through the point } \mathrm{x} \text {-axis. }
$$

