

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATION, 2024/2025ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE)

Date: 11th April, 2024 Time: 8.30am –10.30am

KMA 203 - PROBABILITY AND STATISTICS 11

INSTRUCTIONS TO CANDIDATES

ANSWER **QUESTION ONE** (**COMPULSORY**) AND **ANY OTHER TWO** QUESTIONS

QUESTION ONE (30 MARKS)

- a) Let X and Y be two continuous random variables. State the conditions that must be satisfied by f(x,y) for it to be a joint probability density function of X and Y. (2 marks)
- Consider bivariate random variables X and Y with joint probability density function $f(x,y) = \begin{cases} k(2-x)(1-y), & 0 \le x \le 2, & 0 < y < 1 \end{cases}$

Otherwise

Find;

i) The value of the constant k.

(3 marks)

ii) Marginal distributions of X and Y.

(4 marks)

iii) Conditional distribution Y given X = x.

(2 marks)

iv) Are X and Y independent? Give a reason for your answer.

(1 mark)

c) Let X and Y be bivariate discrete random variables with probability distribution given in the table below

f(x, y)			f ₁ (x)		
		-1	0	1	-1(A)
X	0	0.1	0.18	0.12	0.4
	1	0.15	0.2	0.1	0.45
	2	0.1	0.05	0	0.15
$f_2(y)$		0.35	0.43	0.22	

Determine;

i)	Expected	values of X and	Y, hence	write down	the mean	vector μ .	(3 marks)
						_	

ii) Variance of X and Y. (4 marks)

iii) Covariance between X and Y hence write the covariance matrix Σ . (3 marks)

iv) Correlation between X and Y. (2 marks)

- d) Random variables X and Y have a bivariate normal distribution with parameters $\mu_x=3,~\mu_y=5, \sigma_x^2=4,~\sigma_y^2=9~and~\sigma_{xy}=3.$
 - i) Write down the joint probability distribution of X and Y. (4 marks)
 - ii) Obtain the conditional expectation and conditional variance of X given Y=4.

(2 marks)

QUESTION TWO (20 MARKS)

The joint probability distribution of X and Y is as shown below.

$$f(x,y) = \begin{cases} e^{-x-y}, & x > 0, y > 0 \\ 0, & \text{elsewhere} \end{cases}$$

Obtain

- Joint moment generating function (mgf). (6 marks) a)
- Marginal mgfs of X and Y. (3 marks) b)
- Based on the joint mgf in (i) and marginal mgfs in (ii), can we say X and Y are stochastically c) independent? Why? (2 marks)
- Use mgf to determine; d)
 - Expected values of X and Y. (4 marks) i)
 - Variance of X and Y. ii) (5 marks)

QUESTION THREE (20 MARKS)

Let X and Y be two independent random variables each uniformly distributed over the interval (0, 1). Let U and V be given in terms of X and Y as

$$U = X + Y$$
 and $V = Y - X$

- Determine the joint distribution of X and Y. (3 marks) a)
- Jacobian of transformation from random variables. (4 marks) b)
- The joint distribution of new variables U and V. (4 marks) c)
- d) The marginal distributions of U and V. (9 marks)

QUESTION FOUR (20 MARKS)

Let X and Y be jointly distributed with p.d.f $f(x,y) = \begin{cases} x + y, 0 < x < 1 \\ 0, 0 < y < 1 \end{cases}$ a)

Obtain

i) E(Y/X)(5 marks)

ii) Var(Y/X) (6 marks)

Suppose that $X_1, X_2, ..., X_n$ be independent Bernoulli random variables with same p.m.f. $f(x) = \begin{cases} p^x \ (1-p)^{1-x}, & x=0,1\\ 0, & \text{Otherwise} \end{cases}$ b)

$$f(x) = \begin{cases} p^x (1-p)^{1-x}, & x = 0, 1 \\ 0, & \text{Otherwise} \end{cases}$$

Use moment generating function technique to obtain the distribution of $Y = \sum_{i=1}^{n} X_i$.

(6 marks)

c) Suppose that the joint cumulative distribution function of X and Y is given by

$$F(x,y) = \begin{cases} \frac{1}{10} xy(x^2 + y^2), & 0 \le x \le 2\\ &, & 0 \le y \le 1\\ &, & 0, & \text{Otherwise} \end{cases}$$

Find the joint probability distribution function f(x,y) of X and Y. (3 marks)

QUESTION FIVE (20 MARKS)

a) Let X be a chi-square random variable with 10 degrees of freedom. Compute;

i)
$$P(X \ge 3.940)$$
. (2 marks)

ii)
$$P(X \le 2.558)$$
. (2 marks)

iii)
$$P(4.865 \le X \le 20.483)$$
. (3 marks)

b) Suppose T is a random variable having 16 degrees of freedom. Find;

i)
$$P(T > 1.071)$$
. (2 marks)

ii)
$$P(T \le 1.746)$$
. (2 marks)

iii)
$$P(0.865 \le T \le 2.921)$$
. (3 marks)

c) Suppose that X and Y are two independent and identically distributed random variables each having a probability distribution of the form

$$f(x) = \begin{cases} \frac{2x+4}{24}, x = 1,2,3\\ 0, & otherwise \end{cases}$$

Use moment generating function technique to find the probability distribution of W = X + Y. (6 marks)