Kasarani Campus
Off Thika Road
Tel. 2042692 / 3
P. O. Box 49274, 00100

NAIROBI
Westlands Campus
Pamstech House
Woodvale Grove
Tel. 4442212
Fax: 4444175
KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY
UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR
THIRD YEAR, SECOND SEMESTER EXAMINATION
FOR THE DEGREE OF BACHELOR OF SCIENCE
(MATHEMATICS)
Date: $6^{\text {th }}$ December, 2023
Time: 11.30am -1.30pm

KMA 311 - PARTIAL DIFFERENTIAL EQUATIONS 1

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS
QUESTION ONE (30MARKS)
a) Find the p.d.e by eliminating the arbitrary constants from,

$$
\begin{equation*}
z=(x-a)^{2}+(y-b)^{2} \tag{4Marks}
\end{equation*}
$$

b) Classify the following $2^{\text {nd }}$ order p.d.es as either parabolic, hyperbolic or elliptic.
i) $\quad \boldsymbol{u}_{x x}+\boldsymbol{u}_{y y}=\mathbf{0}$
ii) $\quad x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}=0$
iii) $\quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}$
c) Solve the following equation subject to the given conditions

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=24 x^{2}(t-2), \text { if at } x=0, u=e^{2 t} \text { and } \frac{\partial u}{\partial x}=4 t \tag{4Marks}
\end{equation*}
$$

d) Use the method of characteristics to find the general solution of

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0, \text { in which } y \geq 0, \text { Given that } u(x, 0)=f(x) \tag{5Marks}
\end{equation*}
$$

e) Show that $\boldsymbol{z}=\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b} \boldsymbol{y}-\left(\boldsymbol{a}^{2}+\boldsymbol{b}^{2}\right)$ is a complete solution of

$$
\begin{equation*}
z=p x+q y-\left(p^{2}+q^{2}\right) \tag{5Marks}
\end{equation*}
$$

hence find the singular solution of the p.d.e
f) Find the general and complete integral solution of $\boldsymbol{a}(\boldsymbol{p}+\boldsymbol{q})=\boldsymbol{z}$ where \mathbf{a} is constant
g) Solve $\boldsymbol{p q}+\boldsymbol{q} \boldsymbol{x}=\boldsymbol{y}$ using the Charpits method.

QUESTION TWO (20MARKS)

a) Show that the conditions for exactness of the ordinary differential equation $\boldsymbol{\mu}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{M}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{d x}+\boldsymbol{\mu}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{N}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{d} \boldsymbol{y}=\mathbf{0}$ is a linear p.d.e or order 1. Hence show how to find an integrating factor of $\boldsymbol{M d x}+\boldsymbol{N d} \boldsymbol{y}=\mathbf{0}$
b) Using part (a), find an integrating factor for

$$
\left(2 x^{3} y-y^{2}\right) d x-\left(2 x^{4}+x y\right) d y=0
$$

c) Find the general solution of $(y+z) \frac{\partial z}{\partial x}+(z+x) \frac{\partial z}{\partial y}=x+y$

QUESTION THREE (20MARKS)

a) Solve the p.d.e $\boldsymbol{P q}=\boldsymbol{x}^{m} \boldsymbol{y}^{n} z^{2 l}$ for a complete solution using the terms below as transformation.

$$
\begin{equation*}
Z=\frac{z^{1-l}}{1-l},=\frac{x^{m+1}}{m+1}, Y=\frac{y^{n+1}}{n+1} \tag{6Marks}
\end{equation*}
$$

b) Show that by eliminating the arbitrary function f from $f(u, v)=0$, where u and v are functions of x, y and z and $z=z(x, y)$, a p.d.e in the form $P_{p}+Q_{q}=R$ is realised.
c) Solve the equation $\frac{\partial^{2} u}{\partial x \partial y}=\sin x \boldsymbol{\operatorname { c o s }} y$, subject to the boundary conditions that

$$
\begin{equation*}
\text { at } y=\frac{\pi}{2}, \frac{\partial u}{\partial x}=2 x \text { and at } x=\pi, u=2 \sin y \tag{6Marks}
\end{equation*}
$$

QUESTION FOUR (20MARKS)

a) Derive Charpits system of differential equations for solving the p.d.e $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{p}, \boldsymbol{q})=\mathbf{0}$
b) Solve the p.d.e $\boldsymbol{q}=-\boldsymbol{x} \boldsymbol{p}+\boldsymbol{p}^{2}$ using Charpits auxiliary system
c) Find the p.d.e arising from

$$
\begin{equation*}
(x-a)^{2}+(y-a)^{2}+(z-b)^{2}=1 \tag{4Marks}
\end{equation*}
$$

QUESTION FIVE (20MARKS)

a) Using the transformation $\mathrm{X}=\ln x, Y=\ln y$, find the singular solution of the equation

$$
\begin{equation*}
z=x^{2} p^{2}+y^{2} q^{2} \tag{7Marks}
\end{equation*}
$$

b) Solve the equation using the method of characteristics

$$
\begin{equation*}
x u_{y}-y u_{x}=0 \text { given that } u(0, y)=\cos y^{2} \tag{7Marks}
\end{equation*}
$$

c) Find the complete solution of the P.D.E

