Kasarani Campus Off Thika Road
Tel. 2042692 / 3
P. O. Box 49274, 00100

NAIROBI
Westlands Campus
Pamstech House
Woodvale Grove
Tel. 4442212
Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2016/2017 ACADEMIC YEAR SECOND YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: $9^{\text {th }}$ August, 2016.
Time: 8.30am-10.30am

KMA 204 - LINEAR ALGEBRA II

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) i) State the Cauchy-Scwartz Inequality.
(2 Marks)
ii) Verify the Cauchy-Scwartz Inequality for the vectors $u=(2,-3), v=(5,-7)$ in $I R^{2}$.
(2 Marks)
b) The inner product on P_{2} is defined as $\left.<p, q\right\rangle=a_{o} b_{o}+a_{1} b_{1}+a_{2} b_{2}$, where;
$p(x)=a_{o}+a_{1} x+a_{2} x^{2}$ and $q(x)=b_{o}+b_{1} x+b_{2} x^{2}$. Obtain $\left.<p, q\right\rangle$ for the vectors $p(x)=x^{2} \quad$ and $\quad q(x)=x-3$.
(2 Marks)
c) For the rotation $\theta=\frac{3}{4} \pi$ find $x^{\prime} y^{\prime}$ coordinate if the x y coordinates are $(-2,6)$; also find $\mathrm{x} y$ coordinates if $x^{\prime} y^{\prime}$ coordinates are $(5,2)$.
(4 Marks)
d) Find the cosine of the angle between $u=(-1,5,2)$ and $v=(2,4,-9)$ using Euclidean inner product in $I R^{3}$.
e) Given the matrix

$$
A=\left[\begin{array}{cc}
3 & 0 \\
8 & -1
\end{array}\right]
$$

Find; i) Characteristic equation of A.
ii) Eigen values of A.
iii) Basis for the eigen space of the matrix A .
f) Let R^{2} have the inner product $\langle x, y\rangle=3 x y_{1}+2 x_{2} y_{2}$ where;
$x=(-1,2), y=(2,5) . \quad$ Find
(i) $\quad d(x, y)$
(2 Marks)
(ii) $\|x\|$
g) Let $x=\left(\frac{1}{\sqrt{5}},-\frac{1}{\sqrt{5}}\right)$, and $y=\left(\frac{2}{\sqrt{30}}, \frac{3}{\sqrt{30}}\right)$.

Show that $\{x, y\}$ is orthonormal if $I R^{2}$ has inner product defined in question (f) above but not orthonormal if $I R^{2}$ has Euclidean inner product.
(4 Marks)

QUESTION TWO (20 MARKS)

a) Define the terms;
i) Diagonalizable
ii) Orthonormal
b) Diagonalize the matrix;

$$
A=\left[\begin{array}{cc}
1 & -2 \tag{9Marks}\\
-2 & 1
\end{array}\right]
$$

c) Given that $S=\left\{v_{1} v_{2} v_{3}\right\}=\{(1,2,1),,(2,9,0),,(3,3,4)$,$\} is a basis for I R^{3}$.
i) Find the coordinate vector and coordinate matrix of $v=(5,-1,9$,$) w.r.t. S.$
ii) Find the vector v in $I R^{3}$ whose coordinate vector w. r. t. S is $(v)_{s}=(-1,3,2)$.
(3 Marks)

QUESTION THREE (20 MARKS)

a) Given that $B=\{(1,0),(0,1)\}$ and $B^{\prime}=\{(1,1),,(2,1)$,$\} are basis for I R^{2}$.
i) Find the transition matrix P from B^{\prime} to B.
(9 Marks)
ii) If $[W]_{B^{\prime}}=\left[\begin{array}{c}-3 \\ 5\end{array}\right]$, find $[W]_{B}$
b) State the Cayley-Hamilton theorem; hence use it to find the inverse of the matrix;

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

QUESTION FOUR (20 MARKS)

a) Transform the set $S=\left\{1, x, x^{2}\right\}$ which is a basis for P_{2} into an orthonormal basis w.r. t. the integral inner product on P_{2} defined as;

$$
\begin{equation*}
<p, q>=\int_{-1}^{1} p(x) q(x) d x \tag{10Marks}
\end{equation*}
$$

b) Find a matrix P that diagonalizes

$$
A=\left[\begin{array}{ccc}
3 & -2 & 0 \\
-2 & 3 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

QUESTION FIVE (20 MARKS)

Identify the curve which is represented by the following quadratic equation by first putting it into standard conic form $\quad x^{2}+2 x y+y^{2}-x+y=0$.

