

Date: $12^{\text {th }}$ August, 2016.
Time: 11.00am - 1.00 pm

KMA 103 - LINEAR ALGEBRA I

INSTRUCTIONS TO CANDIDATES

ANSWER OUESTION ONE (COMPULSORY) AND ANY OTHER TWO OUESTIONS

QUESTION ONE (30 MARKS)

a) Solve the following system of linear equations using Gaussian elimination method;

$$
\begin{align*}
& 2 x+y+z=1 \\
& -x+2 y-3 z=3 \\
& x+3 y-2 z=4 \tag{5Marks}
\end{align*}
$$

b) i) Define linear dependence and independence of vectors
ii) Determine whether the following polynomials are linearly independent or dependent.

$$
\begin{equation*}
p(x)=2+x-x^{2}, q(x)=x-2 x^{2}, h(x)=2+3 x-x^{2} \tag{6Marks}
\end{equation*}
$$

c) Which of the following are subspaces of R^{3} ?
i) All vectors of the form (a, 0, 0)
ii) All vectors of the form $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ where $b=a+c$.
iii) All vectors of the form $(a, 1,1)$
d) Let $T: R^{4} \rightarrow R^{3}$ be a linear transformation defined by;

$$
T(X)=\left[\begin{array}{ccc}
4 & 1 & -1-3 \\
2 & 1 & 1-4 \\
6 & 0 & -9
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

Find;
i) Nullity of T.
ii) Rank of T.
(5 Marks)
e) Find a basis for the column space of $\left[\begin{array}{rrrr}1 & 0 & 1 & 1 \\ 3 & 2 & 5 & 1 \\ 0 & 4 & 4 & -4\end{array}\right]$
(4 Marks)
f) Find the values of k for which the matrix $T=\left[\begin{array}{cc}k-3 & 4 \\ k & k+2\end{array}\right]$ has no inverse.
(5 Marks)

QUESTION TWO (20 MARKS)

a) Find the inverse of the following matrix using row reduction method;
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8\end{array}\right]$
(8 Marks)
b) Prove thatif A is an $n \times n$ matrix which is invertible, then for any vector \bar{b} in R^{n} the linear system $A \underline{x}=\underline{b}$ has a unique solution $A^{-1} b$. Hence find a unique solution for the system

$$
\begin{align*}
& 3 x+2 y+3 z=1 \\
& 2 x-2 y+4 z=6 \\
& 4 x+5 y-z=-2 \tag{9Marks}
\end{align*}
$$

c) Let $A=\left[\begin{array}{ccc}1 & -3 & -2 \\ -5 & 9 & 1\end{array}\right]$, and let $u=\left[\begin{array}{c}5 \\ 3 \\ -2\end{array}\right]$. Determine if u belongs to the null space of A.
(3 Marks)

QUESTION THREE (20 MARKS)

a) Find the basis and dimension of the solution space for the equations;

$$
\begin{aligned}
& 2 x_{1}+2 x_{2}-x_{3}+x_{5}=0 \\
& -x_{1}-x_{2}+2 x_{3}-3 x_{4}+x_{5}=0 \\
& x_{1}+x_{2}-2 x_{3}-x_{5}=0 \\
& x_{3}+x_{4}+x_{5}=0
\end{aligned}
$$

Also find the rank of the coefficient matrix.
b) Find the rank and nullity of the linear transformation whose associated matrix is $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3\end{array}\right]$
c) Determine if $S=\{(2,2),(-3,3)\}$ is linearly independent.

QUESTION FOUR (20 MARKS)

a) Find the inverse of the following matrix by first getting its adjoint

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 3 & 2 \\
1 & 0 & 3
\end{array}\right]
$$

b) Determine the value of ' a ' so that;

$$
\begin{aligned}
& x_{1}-3 x_{3}=-3 \\
& 2 x_{1}+a x_{2}-x_{3}=-2 \\
& x_{1}+2 x_{2}+a x_{3}=1 \\
& \text { has i) No solution }
\end{aligned}
$$

ii) Unique solution
iii) Many solution.
c) \quad Show that $(2,-1)$ is the set generated by $S=\{(3,1),(2,2)\}$

QUESTION FIVE (20 MARKS)

a) Express the vector $\underline{u}=(0,2,1)$ as a linear combination of the vectors $\underline{v_{1}}=(-1,1,0), \underline{v_{2}}=(2,0,1), \underline{v_{3}}=(1,1,1)$.
b) \quad Show that $S=\{(1,2,1),(2,9,0),(3,3,4)\}$ is a basis for R^{3}.
c) Find the dimension of the row space of the matrix $\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 5 \\ -1 & 2 & 2\end{array}\right]$

