

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2019/2020 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION BACHELOR OF SCIENCE IN COMPUTER SCIENCE

KBI 2202 - DATA STRUCTURES AND ALGORITHMS

Date: 12th April, 2019 Time: 11.00am – 1.00pm

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS

- a) Compare the following algorithms giving a brief analysis of their worst and best cases.
 - i) Quick sort
 - ii) Merge sort

(8 Marks)

- b) Differentiate between the following
 - i) Linked list and an array
 - ii) Stack and queue
 - iii) Worst case-time and best-case time for an algorithm

(6 Marks)

- c) Explain the following operations of a stack data structure
 - i) Peek()

(2 Marks)

ii) isFull()

(2 Marks)

iii) isEmpty()

(2Marks)

d) Explain a necessary and sufficient condition for a graph to have a spanning tree

(4 Marks)

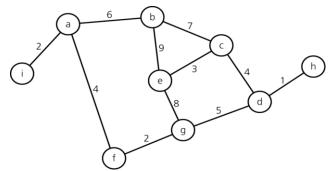
- e) Describe how the following searching strategies work;
 - i) Depth First Search (DFS)
 - ii) Breath First Search (BFS)

(4 Marks)

f) Explain what dynamic programming and divide and conquer problem solving strategies have in common. (2 Marks)

QUESTION TWO (20 MARKS

- a) Describe the following two computer graphs representations techniques
 - i) Adjacency matrix representation
 - ii) Adjacency list representation


(6 Marks)

- b) Explain the following graph applications in design and analysis of algorithms
 - i) Travelling sales man problem
 - ii) Graph coloring problem

(6 Marks)

c) Differentiate between internal sort and external sort as used in the design and analysis of algorithms

(4 Marks)

d) Given the above graph, generate a minimum spanning tree using the Kruskal's algorithm (4 Marks)

QUESTION THREE (20 MARKS

a) Trace bubble sort algorithm as it sorts the following array in ascending order.

[5, 1, 3, 6, 4] (5 Marks)

b) Using a pseudo code, describe the algorithm in (a) above

(5 Marks)

- c) If G is a directed graph, define the following concepts associated with the graph
 - i) Indegree
 - ii) Outdegree

(4 Marks)

d) Briefly describe how the binary search algorithm works

(4 Marks)

e) Before a binary search operates on an array input of size *n*, what needs to be done?

(2 Marks)

QUESTION FOUR (20 MARKS

a) Trace the quick sort partitioning algorithm as it partitions the following array [65 70 75 80 85 60 55 50 45]; use the first element as the pivot in the first pass, 60 as the pivot in the left sub-block pass and 85 as the pivot in the right sub-block pass.


(8 Marks)

b) What is the maximum number of comparison required by a merge sort algorithm to sort

an array of size 11?

Show that the complexity of merge sort algorithm is $O(N \log_2 N)$

(2 Marks) (4 Marks) d) Given the following graph, sketch a Depth First Search tree.

QUESTION FIVE (20 MARKS)

a) Describe the term complexity of an algorithm (4 Marks)

(6 Marks)

- b) Distinguish between the time and space complexities of an algorithm. (4 Marks)
- c) Describe four stack operations. (6 Marks)
- d) Convert the following infix expressions into its equivalent prefix and postfix expressions

$$A*(B+D) / E - F*(G+H/K)$$
 (6 Marks)