

Kasarani Campus Off Thika Road P. O. Box 49274, 00101 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KI

RIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR **END SEMESTER EXAMINATION**

FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS

Date: 17th AUGUST 2023

Time: 8:30am - 10:30am

KMA 203: PROBABILITY AND STATISTICS II

INSTRUCTIONS TO CANDIDATES:

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS **QUESTION ONE (30 MARKS)**

Consider the following joint distribution function defined as; a)

$$f(x,y) = \begin{cases} \frac{1}{8}(6-x-y); & 0 < x < 2; \ 2 < y < 4 \\ 0 & ; elsewhere \end{cases}$$
Find $Pr(X+Y>1)$

i. (3 Marks)

Find the marginal distribution of x (2 Marks)

Let $X_1, X_2, \dots X_n$ be a random sample of size n from a population with mean μ and b) variance σ^2 . Let $\overline{\chi}_n$ be the sample mean. Prove that;

$$\operatorname{var}(\overline{x}_n) = \frac{\sigma^2}{n} \tag{3}$$

Determine whether X and Y are independent given that their joint probability c) density function is as follows (4 Marks)

$$f(x,y) = \begin{cases} 6xy^2, & 0 \le x \le 1; \ 0 \le y \le 1 \\ 0, & elsewhere \end{cases}$$

The bivariate density function of random variables X and Y is given by d)

$$f(x,y) = \begin{cases} \frac{3}{5}x(y+x), & 0 < x < 1; 0 < y < 2\\ & 0, & elsewhere \end{cases}$$
Find $\text{Var}(XY)$
Marks) (6)

e) Prove that
$$E(E(X|Y))=E(X)$$
 (3 Marks)

f) The joint discrete bivariate distribution of X_1 and X_2 is given by

$$f(x_1x_2) = \begin{cases} p^{x_1+x_2}(1-p)^{2-x_1-x_2}, & x_1=0,1; x_2=0,1\\ 0, & elsewhere \end{cases}$$

Find;

i.
$$E(X_1)$$
 (5 Marks)

ii.
$$E(X_1 + X_2)$$
 (4 Marks)

QUESTION TWO (20 MARKS)

a) The random variables x and y have the following joint distribution function;

$$f(x,y) = \begin{cases} ke^{-2x-5y}, & x>0; y>0\\ 0, elsewhere \end{cases}$$

i. Find the value of k (3 Marks)

ii. Hence find the joint moment generating function of x and y $M_{xy}[t_1t_2]$ (7)

Marks)

b) Let the joint probability distribution of X and Y have a joint probability

distribution function given as $f(x,y) = \begin{cases} k(1-x), & 0 < x < y < 1 \\ 0, & elsewhere \end{cases}$

i. Determine the value of k (2 Marks)

ii. Compute;

i)
$$pr(X+Y \le 0.7)$$
 (4 Marks)

$$pr(Y|X=0.5) (4 Marks)$$

QUESTION THREE (20 MARKS)

a) In an experiment to test two procedures, the following information was obtained from the runs

$$n_2 = 9$$
 $\overline{x}_2 = 35.22 \sec s$ $\sum_{i=1}^{9} (x_{2i} - \overline{x})^2 = 160.22$
 $n_1 = 9$ $\overline{x}_1 = 31.56 \sec s$ $\sum_{i=1}^{9} (x_{1i} - \overline{x})^2 = 195.56$

Test hypothesis that the two populations have the same mean. Take $\alpha = 0.01$ level of significance. (3 Marks)

b) Let $X_1, X_2, \dots X_n$ be a random sample from a population with mean μ and variance

$$\sigma^2$$
. Define $s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$. Show that $E(s_n^2) = \sigma^2$ (6 Marks)

c) Suppose that X and Y are two discrete random variables with a probability function given by

$$f(x,y) = \begin{cases} \frac{1}{54}(x+y), & x=1,2,3; y=1,2,3,4\\ 0, & elsewhere \end{cases}$$

i. Determine the marginal probability functions for X and Y respectively.

(4 Marks)

ii. Find
$$Var(Y|X=2)$$
 (7 Marks)

QUESTION FOUR (20 MARKS)

a) Suppose that the joint probability distribution function of X_1 and X_2 is

$$f(x_1, x_2) = \begin{cases} k(x_1 + x_2), & x_1 = 0, 1, 2; & x_2 = 0, 1, 2, 3, 4 \\ 0, & elsewhere \end{cases}$$

Find;

i. The value of
$$k$$
 (2 Marks)

ii.
$$P(X_2=3|X_1=1)$$
 (5 Marks)

b) The joint probability distribution function of X_1 and X_2 is given by

$$f(x_1x_2) = \begin{cases} 6x_1x_2(2-x_1-x_2), & 0 \le x_1 \le 1; 0 \le x_2 \le 1 \\ 0, & elsewhere \end{cases}$$

Find;

i.
$$\operatorname{var}(X_1)$$
 (4 Marks)

ii.
$$cov(X_1X_2)$$
 and interpret the result (9 Marks)

QUESTION FIVE (20 MARKS)

Suppose x_1, x_2, x_3 is a random sample of size n=3 from a normal distribution with unknown mean μ and variance of 54. Define $\overline{x}_3 = \frac{1}{3} \sum_{i=1}^3 x_i$ to be the sample mean. Calculate $p(|x_3 - \mu| < 3)$ (7 Marks)

b) Let $X_1, X_2, \dots X_n$ be a random sample of size n from a standard normal distribution.

Prove that
$$\bar{\chi}$$
 and $\sum_{i=1}^{n} (x_i - \bar{x})^2$ are independent. (13 Marks)