

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR FIRST YEAR, SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS AND COMPUTER SCIENCE)

Date: 15th August, 2023 Time: 8.30am –10.30am

KMA 105 - DISCRETE MATHEMATICS

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) List the members of the set $A = \{x \mid x \in \mathbb{Z}, x = 25r, r \in \mathbb{Z} \text{ and } 10 \le r \le 18\}$

		(2 marks)
b)	Let $A = \{a, b, c, d, e, f, g, h\}$ and $B = \{e, f, g, h, I, j, k, l, m, n, o, p\}$. Find	
	i) $A \cup B$	(1 mark)
	ii) $A \cap B$	(1 mark)
	iii) A-B	(1 mark)
	iv) $B-A$	(1 mark)

c) Let $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$. Determine whether f is one-to-one and onto.

(4 marks)

d)	Prove that if <i>n</i> is an integer and $3n + 2$ is even, then <i>n</i> is even using a proof by contraposition		
		(3 marks)	
e)	Write the converse, inverse and contrapositive of the following statement "If		
	Maria learns Discrete Mathematics, then she will find a job.	(6 marks)	
f)	Determine whether these compound propositions are true or false		
	i) If $1 + 1 = 2$, then pigs can fly	(1 mark)	
	ii) $2+9=11$ or Kenya is in Europe	(1 mark)	
	iii) All Africans are white if and only if Kenya is in Europe	(1 mark)	
	iv) $0 > 1$ and $2 > 1$	(1 mark)	
g)	Consider the argument		
	p ightarrow q		
	<u>p</u>		
	<i>q</i>		
	Determine the validity of this argument.	(4 marks)	
h)	Using set identities show that for any two sets $A - B = A \cap B^c$	(3 marks)	

QUESTION TWO (20 MARKS)

a)	Give	Given that $f(x) = 2x$, $g(x) = x^2$ and $h(x) = x + 1$, find:	
	i)	$f \circ (g \circ h)$	(3 marks)
	ii)	$g \circ (f \circ h)$	(3 marks)
b) Let p and q denote: '		and q denote: "Kenya can play soccer well", and "Kenya ca	n qualify for AFCON"
	respe	ectively. State the verbal translation of each of the following	
	i)	$p \wedge q$	(1 mark)
	ii)	$\neg p \lor q$	(1 mark)
	iii)	$\neg p \land \neg q$	(1 mark)
	iv)	$\neg (p \lor \neg q)$	(1 mark)
		()	

v)
$$\neg(\neg p \lor \neg q)$$
 (2 marks)

An elocution competition was held in French and English. Out of 80 students, 45 students took part c) in French, 35 in English, 15 both in French and English. Represent this information on a Venn diagram then find the number of students

- i) Who took part in French but not English (2 marks) Who took part in English but not French ii) (2 marks)
- Who took part in either French or English (2 marks) iii) (2 marks)
- Who took part in neither iv)

QUESTION THREE (20 MARKS)

a)	Use a direct proof to show that if n is an even integer, then 4 divides n^2	(4 marks)
b)	Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 2x - 3$. Find f^{-1}	(4 marks)
c)	Determine the power set $P(A)$ of $A = \{a, b, c, d\}$.	(4 marks)
d)	Using a Venn diagram to show that $\overline{A \cup B} = \overline{A} \cap \overline{B}$, if A and B are sets	(4 marks)
e)	Use mathematical induction to prove that $1+2+2^2+2^3+\cdots+2^n=2^{n+1}-1$	(4 marks)

QUESTION FOUR (20 MARKS)

a)	Find the number of integers between 1 and 100 inclusively that are divisible	e by either 3, 5 or 7 . (5 marks)
b)	Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 7x^2 + 1$ and $g(x) = x$	3 – 2. Find the formula
	for the composition functions gof, fog and fof	(6 marks)
c)	Show that for any two sets $A - B = A \cap B^c$ using a Venn diagram	(3 marks)
d)	Prove that $\sqrt{7}$ is irrational by contradiction	(7 marks)
<u>QUESTION FIVE (20 MARKS)</u> a) Show that the product of any two rational numbers is rational		
/		(4 marks)
b)	Use mathematical induction to prove that $8^n - 1$ is divisible by 7 for all po	sitive integers n
		(6 marks)
c)	Construct a truth table for the following compound propositions	

- i) $(p \lor q) \Lambda \sim r$ (4 marks)
- ii) $p \to q \wedge [(p \vee r) \to (q \wedge r)]$ (6 marks)