

Kasarani Campus Off Thika Road Tel. 2042692 / 3

P. O. Box 49274,

00100

NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2023/2024 ACADEMIC YEAR FIRST YEAR, FIRST SEMESTER EXAMINATION

FOR THE DEGREE OF BACHELOR OF BUSINESS AND INFORMATION TECHHOLOGY

KMA 2102 - CALCULUS FOR BUSINESS INFORMATION

Date: 8th August, 2023 Time: 11.30 am – 1.30pm

INSTRUCTIONS TO CANDIDATES ANSWER QUESTION ONE (COMPULSOR)

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS QUESTION ONE (30 MARKS)

a) Find domain and range for each of the following functions;

i) $f(x)=(x-4)^2+5$ (2 Marks)

ii) $f(x) = \sqrt{3x+2} - 1$ (2 Marks)

iii) $f(x) = \frac{3}{x-2}$ (2 Marks)

b) Evaluate the limits;

i) $\lim_{x \to -1} \frac{\sqrt{x+2}-1}{x+1}$ (2 Marks)

ii) $\lim_{x \to 3} \frac{x^2 - 3x}{2x^2 - 5x - 3}$ (2 Marks)

c) Find the derivative of the function $f(x)=x^2-2x$ using first principle method.

(3 Marks)

- d) The position of a particle along a straight line at time t seconds is given by $s(t)=3t^2-4t+1$. Find the function that describes its acceleration at time t. (3 Marks)
- e) Given $(x)=x^2+1 \wedge g(x)=\frac{1}{x}$, find each of the following:

i) (foh)(x) (2 Marks)

ii) (gof)(x) (2 Marks)

f) Differentiate the following functions:

i) $e^{x}(2x^{2}+1)$ (2 Marks)

ii) $\ln(x^2+2)$ (2 Marks)

iii) $\cos^3(4\theta+1)$ (2 Marks)

iv) $e^{3x}\sin(2x+1)$ (2 Marks)

 $y = \left(\frac{x}{3x+2}\right)^5$ (2 Marks)

QUESTION TWO (20 MARKS)

a) Find the equation of the tangent to the curve with equation $y = \sin x$ at the point $x = \frac{\pi}{3}$.

(4 Marks)

b) Find the second derivatives of the following functions;

i)
$$x^2 + y^2 = 25$$
 (3 Marks)

ii)
$$y = \ln(1+t^4)$$
 (3 Marks)

c) Find the x-coordinates of the points of inflection for the curve with equation;

$$y = \frac{x^4}{12} + \frac{x^3}{3} - \frac{3x^2}{2} + 3x - 7$$
 (4 Marks)

d) Verify that the following functions satisfy the criteria stated in Rolle 's Theorem and find all values c in the given interval where f'(c)=0

i)
$$f(x) = x^2 + 2x \text{ over}[-2, 0]$$
 (3 Marks)

ii)
$$f(x) = x^3 - 4x \text{ over}[-2,2]$$
 (3 Marks)

QUESTION THREE (20 MARKS)

- a) Find the equation of the line tangent to the graph $f(x)=x^2-4x+6$ at x=1. (3 Marks)
- b) Differentiate the following function implicitly;

i)
$$v^2 + x^3 - v^3 + 6 = 3v$$
 (3 Marks)

ii)
$$y^2 + x^3 - xy + \cos y = 0$$
 (3 Marks)

- c) A particle moves along a coordinate axis in such a way its position that at time t is given by $s(t)=2\sin t t$ for $0 \le t \le 2\pi$. At what time is the particle at rest? (3 Marks)
- d) Find the derivatives of the following;

i)
$$y = \tan (4x^2 - 3x + 1)$$
 (2 Marks)

ii)
$$y=5x^3\sin x$$
 (2 Marks)

iii)
$$f(x) = \frac{\cos x}{4 x^2}$$
 (2 Marks)

iv)
$$y = \cos^4(7x^2 + 1)$$
 (2 Marks)

OUESTION FOUR (20 MARKS)

a) Evaluate the limits;

i)
$$\lim_{x \to 0} \frac{e^x - 1}{x}$$
 (3 Marks)

ii)
$$\lim_{x \to \infty} \frac{3x^5 + x^3 - 5}{6 + x + 7x^2}$$
 (3 Marks)

b) Show that
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 (4 Marks)

c) A rocket is launched so that it rises vertically. A camera is positioned 5000 feet from the launch pad. When the rocket is 100 feet above the launch pad, its velocity is 600 ft/sec. Find the rate of change of the camera's angle as a function of time so that it stays focused on the rocket.

(10 Marks)

QUESTION FIVE (20 MARKS)

- a) Find the extrema of the following function $f(x) = -x^2 + 3x 2$ over [1,3]. (7 Marks)
- b) A ball is dropped from a height of 64 feet. Its height above the ground (in feet) tseconds later is given by $s(t) = -16t^2 + 64$.

- i) What is the instantaneous velocity of the ball when it hits the ground? (3 Marks)
- ii) What is the average velocity during its fall. (3 Marks)
- A rocket travels in an elliptical orbit whose path is given by the equation $45 x^2 + 25 y^2 = 100$. The rocket can fire missiles along lines tangent to its path. If the rocket fires a missile when it is

located at
$$(3, \frac{8}{3})$$
, where will it intersect the x-axis? (7 Marks)