

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI
Westlands Campus
Pamstech House
Woodvale Grove
Tel. 4442212
Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2016/2017 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: $12^{\text {th }}$ August, 2016.
Time: 8.30am - 10.30am

KMA 205 - BASIC NUMBER THEORY

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a) If a / b and c / d show that $a c / b d$.
b) Show that $\sqrt{11}$ is irrational.
c) The square of an odd integer is odd and the square of an even integer is even proof.
(6 Marks)
d) Is 117 a prime number?
e) Show that $1+5+5^{2}+\cdots \ldots \ldots .+5^{11}$ is composite.
f) Show that if p is prime and the $G C D(a, p)>1$, then p / a.

QUESTION TWO (20 MARKS)

a) Prove that every odd number of either of the form $4 p+1$ or $4 p+3 . \quad p \in \mathbb{Z}$.
(5 Marks)
b) Prove that for integer $n, n+2, n+4$ then one of then is divisible by 3 .
c) Use Erastosthene's sieve to find the prime numbers less than 90 .
d) Show that we cannot have 3 consecutive odd numbers other than $3,5,7$ such that they are all prime.

QUESTION THREE (20 MARKS)

a) Show that whenever d is the GCD a and $\mathrm{b}(a, b)$ then $-d$ is also the GCD of a and b .
(5 Marks)
b) Show that there are only 2 GCDs for any two pairs a and b.
(5 Marks)
c) Express the GCD of $(128,30)$ in the form $n(128)+m(30)$.
d) Prove that if $a, b, c, d \in \mathbb{Z}$ and n is a positive integer and $a \equiv b(\operatorname{modn})$ and $c \equiv d(\bmod n)$ then $a+c \equiv b+d(\bmod n)$.

QUESTION FOUR (20 MARKS)

a) State Fermat's little theorem.
b) Use Fermat's little theorem to obtain $3^{60}(\bmod 61)$.
(5 Marks)
c) By considering $f(x, y) \bmod 4$ show that $f(x, y)=y^{2}-x^{2}-2=0$ has no solution.
(6 Marks)
d) Express $\sqrt{7}$ as continued fraction.
(7Marks)

QUESTION FIVE (20 MARKS)

a) State the Chinese remainder Theorem.
b) If a / b and c / d is it true that $a+c / b+d$.
c) Find $\varphi(60)$
d) Find the set of solution z to the congruence $3 z+4=6(\bmod 7)$.
e) Find the GCD of the two numbers $(37129,14659)$ using Euclidean algorithm.

