

Kasarani Campus Off Thika Road Tel. 2042692 / 3 P. O. Box 49274, 00100 NAIROBI Westlands Campus Pamstech House Woodvale Grove Tel. 4442212 Fax: 4444175

KIRIRI WOMENS' UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION, 2016/2017 ACADEMIC YEAR SECOND YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (MATHEMATICS)

Date: 12th August, 2016. Time: 8.30am – 10.30am

KMA 205 - BASIC NUMBER THEORY

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

a)	If a / b and c / d show that $a c / b d$.	
		(5 Marks)
b)	Show that $\sqrt{11}$ is irrational.	(5 Marilas)
c)	The square of an odd integer is odd and the square of an even integer is even pro	(5 Marks) oof.
		(6 Marks)
d)	Is 117 a prime number?	(4 Marks)
e)	Show that $1 + 5 + 5^2 + \dots + 5^{11}$ is composite.	(+ Marks)
		(5 Marks)
f)	Show that if p is prime and the GCD $(a, p) > 1$, then p/a .	(5 Marka)
		(5 Marks)

QUESTION TWO (20 MARKS)

a)	Prove that every odd number of either of the form $4p + 1$ or $4p + 3$. $p \in \mathbb{Z}$.	
,		(5 Marks)
b)	Prove that for integer $n, n + 2, n + 4$ then one of then is divisible by 3.	
		(5 Marks)
c)	Use Erastosthene's sieve to find the prime numbers less than 90.	
		(5 Marks)
d)	Show that we cannot have 3 consecutive odd numbers other than 3,5,7 such that	they are all prime.

(5 Marks)

QUESTION THREE (20 MARKS)

a)	Show that whenever <i>d</i> is the GCD a and b (a, b) then $-d$ is also the GCD of a and b. (5 Marks)				
b)	Show that there are only 2 GCDs for any two pairs <i>a</i> and <i>b</i> .	. ,			
c)	Express the GCD of (128,30) in the form $n(128) + m(30)$.	(5 Marks)			
d)	Prove that if $a, b, c, d \in \mathbb{Z}$ and n is a positive integer and $a \equiv b(modn)$ and	(5 Marks)			
	$c \equiv d(modn)$ then $a + c \equiv b + d(modn)$.	(5 Marks)			
QUESTION FOUR (20 MARKS)					
a)	State Fermat's little theorem.				
b)	Use Fermat's little theorem to obtain 3^{60} (mod 61).	(2 Marks)			
c)	By considering $f(x, y) \mod 4$ show that $f(x, y) = y^2 - x^2 - 2 = 0$ has no solu	(5 Marks) tion.			
d)	Express $\sqrt{7}$ as continued fraction.	(6 Marks)			
		(7Marks)			
QUESTION FIVE (20 MARKS)					
a)	State the Chinese remainder Theorem.				
b)	If a / b and c / d is it true that $a + c/b + d$.	(2 Marks)			
c)	Find $\varphi(60)$	(5 Marks)			
d)	Find the set of solution z to the congruence $3z + 4 = 6 \pmod{7}$.	(3 Marks)			
e)	Find the GCD of the two numbers (37129,14659) using Euclidean algorithm.	(5 Marks)			
-,					

(5 Marks)