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Abstract. Grouping insureds in clusters such as joint-life annuities imposes sta-
tistical dependence. In this paper, we propose the shared compound frailty ap-
proach in collective valuation of joint-life annuity products where most applications
have been in bio-statistics. The positive stable compound process used entails the
frailty mixing distribution with the weighted exponential, generalized exponential
and weighted Weibull as the base force of mortality distributions calibrated on a
large Kenyan insurer joint-life last-survivor dataset. The findings shows that the
positive stable generalized exponential model addresses time-varying heterogeneity
effects positively and negatively associated with dependence.
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Résumé (Abstract in French) Le regroupement des assurés en grappes telles
que les rentes viagères impose une dépendance statistique. Dans cet article,
nous proposons l’approche de la fragilité composée partagée dans l’évaluation
collective des produits de rente viagère dont la plupart des applications ont été
faites en biostatistiques. Le processus composé stable positif utilisé implique
la distribution de mélange frailty avec la Weibull exponentielle pondérée, la loi
exponentielle généralisée et pondérée comme force de base des distributions de
mortalité calibrées sur un grand ensemble de données d’un assureur kenyan sur
la vie conjointe des derniers survivants. Les résultats montrent que le modèle
exponentiel généralisé stable positif aborde les effets d’hétérogénéité variant dans
le temps positivement et négativement associés à la dépendance.
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1. Introduction

Clayton (1978) proposed application of multivariate frailty model when two or
more lives are not independent and assumed to share common risk Ui (frailty).
A lot of research quantifying the effect of heterogeneity on annuity valuation
apply uni-variate frailty models (Su and Sherris (2012); Gatzert et al.(2012);
Onchere (2013); Fong (2015)). Other researchers have applied shared frailty
dependence models but in medical fields see e.g., Hanagal (2020). Closest to
this paper, Onchere et al.(2021a) have applied shared frailty in (national-level)
insureds life table rates to account for dependence. In the present paper, the
scientific interest is in advancing the collective valuation aspects and baseline
modeling in Onchere et al.(2021a) by applying a real life (market-level) last-
survivor dataset and considering the weighted exponential (WE), generalized
exponential (GE) and weighted Weibull (WW) baselines respectively. We believe
this advancements makes the model more flexible and acceptable. Valuation of
annuity products is determined by the actuarial values (AVs). A suitable model
for the mortality rates is needed when computing AVs to minimize the risk of
biased valuation (Coppola et al.(2000);Luciano et al.(2016);Gildas et al.(2018);
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Arias and Cirillo (2021);Onchere et al.(2021b)).

Uni-variate frailty models have been adopted by many authors, for instance,
Gatzert et al.(2012) applies a frailty model to represent mortality heterogene-
ity in risk classes optimization for sub-standard annuities that incorporates
reported risks. Olivieri and Pitacco (2016) suggests using frailty modeling to
classify risk factors for life annuity portfolios. Specifically, the authors identify
risk clusters in a population based on assigned frailty estimates for each cluster.
Onchere et al.(2021b) suggests using the non-central gamma frailty model to
account for unobserved heterogeneity in annuity pricing.

The paper is organized as follows. In Section two, we discuss the materials and
methods applied in the research. Section three describes the Bayesian analysis
used in parameter estimation, along with prior specifications, likelihood distribu-
tion of the model parameters and the Open Source Bayesian Inference using Gibbs
Sampling (OpenBUGS) algorithms. In Section four, we present the model specifi-
cations and results. A brief discussion and summary is provided in Section five.

2. Materials and methods

2.1. Assumptions

(a) Conditional on the shared risk Ui, times-to-death of insureds in the ith group
are independent.

(b) The frailty Ui is assumed to have a multiplicative effect on the insureds hazard:
mij(t|u) = uim0(t).

2.2. Data

We considered 398 joint-life last-survivor annuities data between calender years
2001-2018 from a large Kenyan insurance company. Demographic information of
policyholders includes; gender, main life date of birth, spouse date of birth, effective
date, main life term and spouse term. This dataset will be used in the baseline
parameter estimation procedures and to compute the insureds level of association.

2.3. Joint-life last survivor annuity

The proposed methodology is applicable to any type of joint-life annuity contracts.
Its application to joint-life last survivor annuities is discussed because it is issued
more frequently in the market. Conceptually, this refers to a policy that commences
payment as long as two annuitants are alive and continues for the entire life of the
last survivor. The goal is to guarantee steady income upon attaining the retirement
age; hence, annuities are comparable to single-life pensions. We can express this
as a series of payments to annuitants (X,Y) of say, C annually beginning at time 1

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
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whose AV is expressed as:

C · aXY = C ·
ω∑
t=1

vtSXY (t). (1)

Where the times-to-death random variable T = Max(x, y), (x, y) represents the
male (X) and female (Y ) times-to-death, vt = (1 + i)−t is the present value factor
corresponding to interest rate i, SXY (t) is the last survivor probability and (ω = 109)
the limiting age.

Considering dependence the AV in Equation (1) becomes

C ·
ω∑
t=1

vt[SX(t) + SY (t)− SXY (t)], (2)

under independence we have

C ·
ω∑
t=1

vt[SX(t) + SY (t)− SX(t) · SY (t)], (3)

where SX(t), SY (t), SXY (t) are the survivor probabilities for the male (X), female (Y )
and dependent lives (X,Y ) respectively. Supposing an annuity series of payments
of C annually, then by applying the equivalence principle we get net single premium
of P :

P = C × aXY . (4)

Traditionally, due to simplicity in computations most insurers assume indepen-
dence in valuation of joint-lives thereby adapting the AV shown in Equation (3).
Frailty dependence modeling accounts for both heterogeneity and dependence thus
adapting the AV shown in Equation (2).

2.4. Shared Frailty Approach

The mortality rate for a shared frailty approach is represented as:

mij(t|ui) = uim0(t); t > 0, (5)

where mij(t|ui) denotes the jth individuals mortality rate in the ith group, ui is the
shared risk and m0(t) the baseline hazard. When we assume conditionally indepen-
dent expected times-to-death for a specified shared risk, the bi-variate marginal
survivor can be expressed as:

SXY (x, y) = LUi(M0(x) +M0(y)), (6)

where L(.) is the Laplace transform and M0(.) the cumulative baseline mortality
rate. (See proof in Appendix A1, page 3210).
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2.5. The Positive Stable Mixture

The positive stable probability density function (pdf) is expressed as:

f(u) = − 1

πu

∞∑
j=1

Γ(jα+ 1)

j!
(−u−αk/α)j sin(αjπ); k > 0, u > 0, 0 < α ≤ 1.

Where k is the scale parameter and α the index parameter. To ensure identifiability
let k = α. (Proof found in Hougaard (2000)).

f(u) = − 1

πu

∞∑
j=1

Γ(jα+ 1)

j!
(−u−α)j sin(αjπ);u > 0, 0 < α ≤ 1.

The Laplace is a unique type of Power-Variance-Function Laplace Onchere (2013)
expressed as:

LU (s) = exp{− k
α
sα}.

Where again to ensure the model is identifiable we set k = α.

LU (s) = exp (−sα), 0 < α ≤ 1. (7)

The suggested frailty mixture has many merits. Firstly, it is easily implementable
due to its simplified Laplace derived in Equation (7). Secondly, the positive stable
variance is infinite. As a result, more heterogeneity can be accounted for than when
a frailty mixture is used with fixed variance.
The marginal bi-variate survivor function applying Equations (6) and Laplace (7)
is:

SXY (x, y) = exp{−(M0(x) +M0(y))α}, (8)

In dependence frailty modeling, the frailty distribution can be specified using
the relative risk measure A(x, y) seen as a local extension of Kendall’s tau τ
(Wienke (2011)). A(x, y) describes how dependence of bi-variate mortality rates
changes with time. The relative risk for the first-life, given an exposure of the sec-
ond life to an event as opposed to being event-free is represented as:

A(x, y) =
SXY (x, y) ∂2

∂x∂ySXY (x, y)
∂
∂xSXY (x, y) ∂∂ySXY (x, y)

. (9)

A(x, y) > 1 represents positive association, A(x, y) < 1 represents negative associa-
tion and A(x, y) = 1 independence.
We present below two examples with specific frailty mixing densities to obtain the
relative risk.

Example 1. Using the positive stable frailty mixing distribution and integrated base
force of mortality M0(.) the relative risk A(x, y) defined in Equation (9) is expressed
as:

A(x, y) = 1− (1− 1

α
)(M0(x) +M0(y))−α. (10)
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(See proof in the Appendix A2, page 3210). This relative risk is time-varying and
dependent on times-to-death. When α takes on values near zero high dependence
is observed between X and Y , while α near one indicates low dependence. α = 1
and α = 0 corresponds to maximal independence.

Example 2. Using the Gamma frailty mixing distribution and integrated base force
of mortality M0(.), the relative risk A(x, y) is expressed as:

A(x, y) = (1 + σ2), (11)

where σ2 is the frailty variance. (See proof in the Appendix A3, page 3210). This
relative risk is constant and independent of times-to-death.

2.6. Baseline Hazards

For annuity valuation purposes parametric base force of mortality estimation is
desired (see Frees et al.(1996)). The GE, WE and WW distributions are suggested
as an improvement of the Weibull, lognormal and gamma baselines applied in
Onchere et al.(2021a) since these give more flexibility in modeling as shown be-
low.

2.6.1. Generalized Exponential

If m0(t) follows the GE with pdf f0(t) = $ρ(1−exp (−$t))ρ−1 exp (−$t); t > 0, $, ρ > 0.
Where $ is a scale parameter and ρ the shape parameter. Then the survival, hazard
and cumulative hazard functions are respectively;

S0(t) = 1− [1− exp (−$t)]ρ,

m0(t) =
ρ$(1− exp (−$t))ρ−1 exp (−$t)

1− [1− exp (−$t)]ρ
,

M0(t) = − ln(1− [1− exp (−$t)]ρ).

The GE hazard is increasing (ρ > 1), decreasing (ρ < 1) or constant (ρ = 1).

The log-likelihood function `($, ρ) considering a given set of times-to-death data
t = (t1, t2, ..., tk) is given by

`($, ρ|t) = k log($ρ) + (ρ− 1)

k∑
i=1

log(1− exp (−$ti))−$
k∑
i=1

ti (12)

The estimates $̂, ρ̂ can be derived from the non-linear equations ∂`
∂$ = 0 and ∂`

∂ρ = 0

using any iterative methods. In the current paper we apply OpenBUGS algorithms.
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2.6.2. Weighted Exponential

If m0(t) follows the WE with pdf f0(t) = (1 − exp (−aλt)) 1+λ
λ a exp (−at); t >

0, a, λ > 0. Where a is a scale parameter and λ the shape parameter
(Gupta and Kundu (2009)). Then the survival, hazard and cumulative hazard func-
tions are respectively;

S0(t) =
1 + λ

λ
[exp (−at)− exp{−(1 + λ)ax}

1 + λ
],

m0(t) =
(1− exp (−aλt))a exp (−at)
exp (−at)− exp{−(1+λ)ax}

1+λ

,

M0(t) = − ln(
1 + λ

λ
[exp (−at)− exp{−(1 + λ)ax}

1 + λ
]).

The log-likelihood `(a, λ) considering a given set of times-to-death data t =
(t1, t2, ..., tk) is expressed as:

`(a, λ|t) = k log(
a

λ
(1 + λ)) +

k∑
i=1

log(1− exp (−aλti))− a
k∑
i=1

ti (13)

The estimates â, λ̂ can be derived from the non-linear equations ∂`
∂a = 0 and ∂`

∂λ = 0.

2.6.3. Weighted Weibull

Ifm0(t) follows the WW with pdf f0(t) = abxb−1 1+λb

λb
exp{−axb}(1−exp{−aλxb}).Where

λ is a scale parameter and a, b are shape parameters.(Roman, R. (2010)) Then the
survival, hazard and cumulative hazard functions are respectively;

S0(t) =
1 + λb

λb
[exp{−axb} − 1

1 + λb
exp{−axb(1 + λb)}],

m0(t) =
abxb−1 exp{−axb}(1− exp{−aλxb})

exp{−axb} − 1
1+λb

exp{−axb(1 + λb)}
,

M0(t) = − ln(
1 + λb

λb
[exp{−axb} − 1

1 + λb
exp{−axb(1 + λb)}]).

The log-likelihood `(a, b, λ) considering a given set of times-to-death data is given
by

`(a, b, λ|t) = k log(
ab(1 + λb)

λb
)−a

k∑
i=1

tbi + (b−1)

k∑
i=1

log ti+

k∑
i=1

log(1− exp (−aλtib)). (14)

The estimates â, b̂, λ̂ can be derived from the non-linear equations ∂`
∂a = 0, ∂`∂b = 0

and ∂`
∂λ = 0
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3. Bayesian analysis

In the Bayes technique, any unknown parameter is regarded as a varying quantity
and its distribution is derived from what is known about them. This technique
is used as estimation procedures in actuarial studies e.g. by Scollnik (1993) in
analyzing concurrent mathematical statements for assurance pricing also by
Rosenberg and Young (1999) in studying time-varying dependence when there
exists shifts in variance estimation. The Bayes specification technique is executed
in the following procedure using OpenBUGS. Firstly, we defined log-likelihood
functions as shown in Equations 12,13 and 14 respectively. Due to the lack of
earlier knowledge about the base force of mortality specifications, non-informative
priors are selected and presumed to be flat. That is, Gamma(0.001, 0.001) for the
positive specifications see Hanagal (2020).

Actual data for males and female times-to-death is obtained from the large Kenyan
insurer last-survivor dataset. Model specifications will be obtained by considering
the life terms from 39 exact through to 68 exact as given in the real dataset.
Burn-in period is fixed at 30000 as per the Brooks-Gelman-Rubin (BGR) Figure 1
to ensure posterior distributions sequences of draws have low auto-correlation and
is obtained from the values of a run of Markov chain (Brooks and Gelman (1998)).
Thereby diminishing the effects of the initial density. We simulate 2 chains in
parallel and thereafter stationarity will be monitored upon completion of 100000
replications. If convergence is achieved the mean of the posterior distribution
is selected as a point estimate. Low Akaike Information Criteria (AIC), Deviance
Information Criteria (DIC) and Bayesian Information Criteria (BIC) would indicate
a better model.

1. DIC=Ā + pA where Ā is the posterior mean of −2 × logL indicating the
goodness-of-fit quality of the proposed methodology to the dataset. Â = −2× logL
is the posterior mean of stochastic nodes and pA = Ā − Â measures the ultimate
parameters specifications (see Spiegelhalter et al.(2002)).

2. AIC=Â+ 2ρ where; ρ is the aggregate specifications.

3. BIC=Â+ρ× log(m) where; m is the sample size. The BIC is useful as it considers
the BIC penalty for all parameters being estimated. OpenBUGS algorithm applied
to analyse the GE model is shown in the Appendix B, page 3211.

3.1. BGR Diagnostics and Trace Graphs

The diagnostic graphs for BGR nodes convergence examined is illustrated in Figure
1. As the simulation chains continues, the total-sequence simulated value (green
curvature) and average within-sequence intervals (blue curvature) are examined.
Their ratio (red curvature) is observed to merge to one after 30000 simulations
hence providing a good burn-in period.

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst



W. O. Onchere, P. G. Weke, J. M.Ottieno, C. A. Ogutu, Afrika Statistika, Vol. 17 (2), 2022,
pages 3199 - 3216. Compound Joint-life Annuity Frailty Modeling. 3207

Table 1: Base Force of Mortality Parameter Estimates.

Baseline Parameters AIC DIC BIC
1. GE ρ1 = 7050;$1 = 0.1816 2483 2477 2491

ρ2 = 4514;$2 = 0.1579 2604 2602 2612
2. WE a1 = 0.03896; l1 = 0.006283 3626 3623 3627

a2 = 0.03571; l2 = 0.009485 3699 3697 3700
3. WW a1 = 6.302E − 6; b1 = 3.074; l1 = 2.642 3037 3019 3036

a2 = 1.49E − 5; b2 = 2.881; l2 = 3.151 3283 3038 3282

3.2. Discussion

On the basis of Bayes inference based on Gibbs sampling the GE density is selected
as the AIC, DIC and BIC values is lower in comparison with the other distributions.
The model specifications applied in this study is displayed in Table 1 upon imple-
menting the Bayes technique discussed previously.

3.3. Goodness-of-fit test

Comparing Kaplan-Meier survival function plot (black curve) for the real dataset
verses the GE model survivor functions for males and females (red curves) we
visually observe a good fit (see Figure 3).

Further, a chi-square and Kolmogorov-Smirnov goodness-of-fit test of the dataset
for GE survivor rates is displayed in Table 2. As shown, the chi-square and
Kolmogorov-Smirnov test p-values are ≥ 5%. Thus, we do not reject the null hy-
pothesis that the Kenyan last-survivor rates can be effectively modeled using a GE
survivor function at 5% significance level. The GE quantile-quantile (Q-Q) graph
in Figure 2 displays a straight line through a majority of the quantiles further
justifying the GE as a better fit. We can thus conclude that the GE best fits the
data.

Table 2: Chi-square and Kolmogorov-Smirnov Goodness-of-fit of GE to the Kenyan
Last-survivor Rates.

Name Value (Males data) Value (Females data)
Chi-squared statistic 812 1056
Degree of freedom 784 1024
Chi-squared p-value 0.2371 0.2374
Kolmogorov-Smirnov test statistic 0.19231 0.2222
Kolmogorov-Smirnov p-value 0.6069 0.3047
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4. Model Specifications and Results

The positive stable GE frailty bi-variate survivor function is described explicitly as

S(x, y) = exp{−(− ln(1− [1− exp (−$1x)]ρ1)− ln(1− [1− exp (−$2y)]ρ2))α}. (15)

The positive stable GE dependence mixture is displayed in Figure 4 where (x,y)
represents the male and female annuitants times-to-death. The baseline hazard
parameters are ρ1 = 7050;$1 = 0.1816; ρ2 = 4514;$2 = 0.1579 computed from the
Bayes inference technique.

The joint last-survivor local measure of association is determined from the large
Kenyan insurer joint-life last survivor data-set. We consider 398 joint-life annui-
tants data in-force between 2001-2018. The dependence SXY (x, y) survivor rates
is computed using Kendall’s tau (τ = 0.7357) obtained from the Kenyan joint lives
dataset. Here α = 0.2643 obtained using the relation α = 1− τ .

The independence survivor rates SX(x) ·SY (y) is computed from Equation 15 when
α = 1. The AVs and net single premiums are generated as previously discussed.
Considering a case where the annuitants expect to receive Ksh 200000 annually.

4.1. Impact on survivor rates

As shown in Figure 4 the survivor function under independence is higher initially
compared to the dependence assumption. This is explained by downside impacts
of association incorporated in the frailty methodology (e.g., occurrence of a conta-
gious disease or an accident). Thus incorporating short-term association that ex-
ists. Afterwards, there is an underestimation of survival rates in the independence
approach in comparison with the dependence approach because of longevity risk.
I.e the longer the joint lives survive beyond a certain time, the better their chances
of survival are. In this case, the long-term association is catered for. Therefore the
independence approach under-values the survival risk at extreme advanced ages.

4.2. Impact on annuity net single premiums

Moreover, in Figure 5 when the annuity net single premiums are compared at 7%
interest rate (central bank of Kenya interest rate as at May 2022) it is observed that
the independence approach leads to over-valuation of the insurance firm’s prod-
uct at the start of the policy and under-valuation later because mortality increase
decelerates at extreme old ages. This can be explained by the fact that the insurer
offers high prices when the survivor rates are high and vice versa because the
benefits are paid for the entire life of the last survivor.

5. Conclusion

The present paper scientific interest is in advancing the collective valuation
aspects and baseline modeling in Onchere et al.(2021a) by applying a real life
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(market-level) last survivor dataset and considering the WE, WW and GE baselines
respectively. Specifically, Onchere et al.(2021a) applied national-level life table
rates and the Weibull baseline distribution. The findings arrived at is that the
GE baseline distribution provides a good fit to the Kenyan last-survivor dataset
compared to the other baseline distributions following the models comparison
criteria. Further, applying the positive stable GE frailty approach demonstrates
that the relative risk is time-varying and dependent of lifetimes when compared to
the independence approach.

The shared frailty shows a decrease in the expected obligation of the insurance
firm at early annuitants ages (due to low survivor rates) but an increase in liability
at extreme old ages (due to high survivor rates) when association is considered.
A good explanation for this trend is that the survivor rates for frail couples is
assumed to be low in the initial stages of the policy, later increase in survivor rates
at very old ages since high-risk couples have already died, emphasizing the impor-
tance of dependence modeling in collective valuation of annuity contracts. Thus
assumptions of joint-life independence can result in biased annuity valuation.
Future research involves extensions to advanced compound frailty processes.
In-order to account for negative association, for instance, death of one couple
leading to a positive effect on survival of the other exists. We hope to explore this
point in a future paper.
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5.1. Appendix

Appendix A1. The bi-variate conditional survivor function for a given shared frailty
Ui is:

SXY (x, y|ui) = SX(x|ui) · SY (y|ui),

applying

S(t|u) = exp (−
∫ t

0

m0(x|u)dx) = exp (−uM0(t)),

leads to
SXY (x, y|ui) = exp (−ui[M0(x) +M0(y)]).

Using expectation

SXY (x, y) = E[exp (−ui[M0(x) +M0(y)])] = LUi(M0(x) +M0(y)).

Appendix A2. From Equation (9) and the bi-variate survivor in [8] we have

∂

∂x
SXY (x, y) = −α(M0(x) +M0(y))α−1m0(x) exp {−(M0(x) +M0(y))α},

∂

∂y
SXY (x, y) = −α(M0(x) +M0(y))α−1m0(y) exp {−(M0(x) +M0(y))α},

∂2

∂x∂y
SXY (x, y) = [α2(M0(x) +M0(y))2α−2 − α(α− 1)(M0(x) +M0(y))α−2]

·m0(x)m0(y) exp {−(M0(x) +M0(y))α}.

A(x, y) =
[α2(M0(x) +M0(y))2α−2 − α(α− 1)(M0(x) +M0(y))α−2]

−α(M0(x) +M0(y))α−1m0(x) exp {−(M0(x) +M0(y))α}

·m0(x)m0(y) exp {−(M0(x) +M0(y))α} exp {−(M0(x) +M0(y))α}
−α(M0(x) +M0(y))α−1m0(y) exp {−(M0(x) +M0(y))α}

,

A(x, y) = 1− α(α− 1)(M0(x) +M0(y))α−2

α2(M0(x) +M0(y))2α−2
,

A(x, y) = 1− (1− 1

α
)(M0(x) +M0(y))−α.

Appendix A3. Using the identifiable gamma Laplace LUi(s) = (1 + sσ2)−1/σ
2 and

bi-variate survivor SXY (x, y) = LUi(M0(x) +M0(y)) = (1 +σ2(M0(x) +M0(y)))−1/σ
2 we

have From Equation (9):

∂

∂x
SXY (x, y) = m0(x)(1 + σ2(M0(x) +M0(y)))−1/σ

2−1

∂

∂y
SXY (x, y) = m0(y)(1 + σ2(M0(x) +M0(y)))−1/σ

2−1
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∂2

∂x∂y
SXY (x, y) =

m0(x)m0(y)(1 + σ2)

(1 + σ2(M0(x) +M0(y)))1/σ2+2

A(x, y) =
(1 + σ2(M0(x) +M0(y)))−1/σ

2 · m0(x)m0(y)(1+σ
2)

(1+σ2(M0(x)+M0(y)))1/σ
2+2

m0(x)(1 + σ2(M0(x) +M0(y)))−1/σ2−1 ·m0(y)(1 + σ2(M0(x) +M0(y)))−1/σ2−1

A(x, y) = (1 + σ2)

Appendix B: R-Program Code.

GE OpenBUGS R-code

MODEL = function ( ) \ {
for ( i in 1:398)\{

dummy[ i ]=0
dummy[ i ] $\sim$ dlogl ik ( logLike [ i ] )
logLike [ i ] = log (b∗a )+ (b−1)∗ log (1−exp( −a∗s [ i ] ) ) − a∗s [ i ]

\}
a $\sim$ dgamma(0.001 ,0.001)
b $\sim$ dgamma(0.001 ,0.001)

\}

write .model (MODEL, ”MODEL. txt ” )

INIT=function ( ) \{
l i s t ( a=dgamma(0.001 ,0.001) ,b=dgamma(0.001 ,0.001))

\}

DATA= l i s t ( s=X− l i f e t ime )\# for the females ’ s=Y− l i fe t ime ’
BUGS=bugs ( data=DATA, in i t s=INIT , parameters . to . save=c ( ” b” , ”a ” ) ,
model . f i l e =”MODEL. txt ” ,n. chains=2,n. i t e r =100000,n. burnin=30000,
codaPkg=TRUE,debug=T )
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Fig. 1: BGR Diagnostics and Trace Graphs for GE(ρ,$) where b = ρ, a = $.

Fig. 2: Q-Q Plot for GE model to the Kenyan last-survivor rates.
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Fig. 3: Kaplan-Meier (black curve) versus GE (red curve) survivor curves.
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Fig. 4: Dependence (red curve) versus Independence (black curve) Survival Rates

Fig. 5: Dependence (red curve) versus Independence (black curve) Net Single Pre-
mium Rates
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