A Note on Invariant subspaces of some operators in Hilbert Space.

Irene M. Muteti, Bernard M .Nzimbi, Stanley K. Imagiri and Jairus M. Khalagai

University of Nairobi,

School of Mathematics,

P.O Box 30197-00100,

Nairobi, Kenya.

Email address: irenemumb@yahoo.com

Abstract

In this paper, we show that if M is a nontrivial invariant for both T and S, then M is ST —invariant or TS — invariant. An example is provided to illustrate that if M is TS — invariant, then it is not necessarily invariant for either T and S. However if TS and T have same structure and M is invariant for TS, then T is also invariant for TS and T.

Keywords : Invariant subspaces, Nilpotent operators

1. Introduction

The invariant subspaces of an operator plays a central role in operator they as they give information on the structure of the operator. They are a direct analogue of the eigen-vectors of a linear operator. The motivation behind the study of invariant subspaces come from the interest of structure of operators and from approximation theory. Let H be a Hilbert space and

B(H) denotes all bounded linear operators on $\stackrel{H}{\cdot}$. A subspace M of $\stackrel{H}{\cdot}$ is a invariant under operator $\stackrel{T}{\cdot}$ if $\stackrel{T}{\cdot}$, that is, $x \in M$ for every $\stackrel{Tx \in M}{\circ}$ or $TM \subset M$. If $\stackrel{T}{\cdot}$ is any subset of B(H), we denote by $\{T\}'$ the commutant of $\stackrel{T}{\cdot}$, that is $\{T\}' = \{T \in B(H): ST = TS\}$.

A subspace $M \subset H$ is said to be nontrivial hyper-invariant subspace (n.h.s) for a fixed operator in $T \in B(H)$ if $0 \neq M \neq H$ and $SM \subset M$ for each $S \in \{T\}$. An operator $T \in B(H)$ is nilpotent if $T^n = 0$.

Theorem 1.1 If $T \in B(H)$, then the following subspaces are invariant under T:

(i) {0}. (ii) *H*. (iii) *Ker*(*T*) (iv) *Ran*(*T*)

Proof. (i) If $x \in \{0\}$, then x = 0 hence $Tx = 0 \in \{0\}$. Thus $\{0\}$ is invariant under T.

(ii) If $x \in H$, then T is since T on Hilbert space H is bounded, then it is bounded below and H hence its range is closed. Thus H is invariant under T.

(iii) If
$$x \in Ker(T)$$
, then $Tx = 0$ and hence $Tx \in Ker(T)$. Thus $Ker(T)$ is invariant under T .

т

(iv) Note that, since the operators T on a Hilbert space H is bounded below and hence its range T(Ran(T) is closed subspace of H. Thus ()) is contained in Ran(T). Let $x \in Ran(T)$, then $Tx \in Ran(T)$. Thus Ran(T) is invariant under T.

Lemma 1.2 Let $U_1, U_2 \subset H$ be invariant subspaces. Then $U_1 \cap U_2$ and $U_1 + U_2$ are invariant subspaces.

Proof. Suppose U_1 and U_2 are both under T, and $u \in U_1 \cap U_2$. Since U_1 is invariant under T, then T (u) $\in U_1$. Similarly, since U_2 is invariant under T, then T (u) $\in U_2$ and so

 $T(u) \in U_1 \cap U_2$. Thus $U_1 \cap U_2$ is invariant under T.

Suppose $u \in U_1 + U_2$. Then $u = u_1 + u_2$ where $u_i \in U_i$ for i = 1, 2. Applying the linear operator on both sides of the equation we have

 $T(u) = T(u_1 + u_2) = T(u_1) + T(u_2).$

Because U_1, U_2 are all invariant subspace under T, and since $u_i \in U_i$ we have $T(u_i) \in U_i$

For i = 1,2. Hence T (u) is contained in $U_1 + U_2$ and therefore $U_1 + U_2$ is invariant under T.

Proposition 1.3 Let T and L be nonzero on a Hilbert space H. If LT = 0, then Ker(L) and Ran(T) are nontrivial invariant subspaces for both T and L.

Proof. If LT=0, then Ran (T) \subseteq Ker (L). Hence $T(Ker(L)) \subseteq T(H) = Ran(T) \subseteq Ker(L)$. Since $T \neq 0$, $Ran(T) \neq 0$, so that $Ker(L) \neq 0$. Since $L \neq 0$ $Ker(L) \neq H$. Therefore Ker(L) is nontrivial invariant subspace for T. Dually since $T^*L^*=0$, $L^*\neq 0$ it follows that $Ker(T^*)^{\perp}$ is

nontrivial invariant subspace for L^* , and hence $Ran(T) = Ker(T^*)^{\perp}$ is a nontrivial invariant subspace for L.

Remark 1.1 Ker(L) and $\overline{Ran(T)}$ are invariant subspaces for L and T.

Proposition 1.3 leads to the following result.

Corollary 1.1 Every nilpotent operator has a nontrivial invariant subspace.

Proof. Recall that, an operator is nilpotent if $T^n = 0$. Thus $T^n = T(T^{n-1})$ which can be written as a product of two operators and by Proposition 1.3 Ker (T) and $\overline{Ran(T^{n-1})}$ are nontrivial invariant subspaces.

Proposition 1.4 Let $T \in B(H)$ and M be subspace of a Hilbert space H. If M is T —invariant, Then $(T|_M)^* = PT^*|_M$ where P is the orthogonal projection of H onto M. **Proof.** Let M be an invariant subspace for T so that $T(M) \subseteq M$, and let P be the orthogonal projection onto M. Since P v = v for every $v \in M$ and using the fact that P is self-adjoint, we have $\langle (T|_M)^*u, v \rangle = \langle u, T|_M v \rangle = \langle u, Tv \rangle = \langle u, TPv \rangle = \langle PT^*u, v \rangle = \langle PT^*|_M u, v \rangle$ for every $u, v \in M$, hence $(T|_M)^* = PT^*|_M$.

Proposition 1.5 Let *T*, $S \in B(H)$ and *M* be a nontrivial invariant subspace for both T and S. Then TS - INVARIANT INVARIANT.

Proof. If $\stackrel{M}{}$ is invariant for both $\stackrel{T}{}$ and $\stackrel{S}{}$ then we have $\stackrel{T(M) \subseteq M}{}$ and $\stackrel{S(M) \subseteq M}{}$. Thus we have $TSM = T(SM) \subseteq T(M) \subseteq M$. Therefore $\stackrel{M}{}$ is TS – invariant.

Proposition1.6 Let $T, S \in B(H)$ and M be a nontrivial invariant subspace for both T and S. Then M is ST -invariant

Proof. If M is invariant for both T and S, then we have M and $S(M) \subseteq M$. Thus we have $STM = S(TM) \subseteq S(M) \subseteq M$. Therefore M is ST - invariant.

Question. If M is TS -invariant, is it true that M is T -invariant or S - invariant?

Answer. We answer this question with the following example.

Let $TS = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. We observe that $Lat(TS) = \{\{0\}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, R^2\}$. However TS can be written, not uniquely, as a product of $T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $S = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. We notice that $M = span \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is invariant for TS but it is not invariant for T and S.

This leads to the following remarks:

Remark 1.2 Let $\stackrel{M}{}$ be subspace of a Hilbert space H and $T, S \in B(H)$. If $\stackrel{M}{}$ is TS - invariant, then $\stackrel{M}{}$ is not necessarily T - or S -invariant.

However if $\begin{bmatrix} TS, T & S \\ and \end{bmatrix}$ have the same structure, then if $\begin{bmatrix} M \\ is TS - invariant the \end{bmatrix}$ is also invariant for both $\begin{bmatrix} T \\ and \end{bmatrix}$ and S.

REFERENCES

- [1] Bernstein A. R. and Robinson A., Solution of an invariant subspace problem of K.T Smith and P.R. Halmos, Pacific J. Math .16 (1966) 421-431.
- [2] Campbell S.L Linear Operators for which T*T and TT* commute, Proc.Amer.Math.Soc., 34, (1972) 177-180.
- [3] Campbell S.L.Linear Operator for which T*T and TT* commute II, Pacific .J.Math .Soc .,53, (1974) 355-361.
- [4] Campbell S., Linear Operator for T*T and T+T* commute, Pacific J.Math 61 (1975) 53-58.
- [5] Carlos S. Kubrusly, An introduction to models and decomposition in operator theory, Birkhauser Boston, MA, 1997.

- [6] Fillmore P.A., Herrero D. A. and Longstaff W. E., The hyperinvariant subspace lattice of linear transformation, linear Algebra and Appl. 17 (1977), 125-132.
- [7] Jong –Kwang Yoo* Some Invariant Subspace for Bounded Linear Operators, Chungcheong Mathematical Society, Vol 24, No. 1, 2011.
- [8] Nzimbi B. M., A note on Some Equivalences of Operators and Topology of Invariant Subspaces, Mathematics and Computer Science, Vol. 3,No. 5, 2018, pp 102-112.