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Abstract: This paper entails numerical investigation of the combined effects of radiation, magnetic fields viscosity, 

porosity and rotation past a moving vertical porous plate on flow variables. The governing equations considered are 

reduced to specific form with respect to the geometry of the problem under study and resulted to non- linear partial 

differential equations. Turbulent modeling is done using the time-averaged approach known as Reynolds-averaged 

Navier–Stokes equations. The resulting final set of equations are non linear thus no analytical method could be applied 

to obtain the solution. They are converted to a system of linear equations and numerical techniques are used to obtain the 

approximate solutions. The solution is generated by computer generated program code developed in MATLAB version 

7.90.529(R2009b). Graphical results showing the effects of varying various thermo physical parameters on the velocity 

and temperature profiles are presented and discussed. The results obtained are useful in engineering, mining, industries 

and many other scientific fields. 

  
Index Terms— Fluid, Magneto hydro magnetic, Turbulent.  

I. INTRODUCTION 

The study of flows of electrically conducting fluids is known as magneto hydrodynamics. Such flows are 

relevant due to the applications they have in industries, engineering, mining, science and technological 

processes. Over the years, lots of researches pertaining to turbulent hydro magnetic flows have been done. Some 

of the works include; Seth et al [1] studied effects of Hall current and rotation on unsteady MHD Couette flow 

in the presence of an inclined angle of inclination of magnetic field. The results showed that magnetic field has 

accelerating influence on the fluid velocity in both the primary and secondary flow directions. Magiri et al [2] 

studied Hydro magnetic turbulent flow past a semi-infinite vertical plate subjected to heat flux. The results 

showed that increase in Hall parameter leads to an increase in primary velocity profiles.  

 

Idowu et al [3] Heat and mass transfer of magneto hydrodynamic (Mhd) and dissipative fluid flow past a 

moving vertical porous plate with variable suction. The conclusion was that as permeability parameter, increases 

the peak value of velocity tends to increase. Sigey et al. [4] studied Magneto hydrodynamic (MHD) free 

convective flow past an infinite vertical porous plate with joule heating and reveal that an increase in joules 

heating parameter causes an increase in the velocity and temperature profiles uniformly near the plate but 

remain constantly distributed away from the plate. 

 

Sandeep, N., & Sugunamma, V. [5] investigated Radiation and Inclined Magnetic Field Effects on Unsteady 

Hydro magnetic Free Convection Flow past an Impulsively Moving Vertical Plate in a Porous Medium. It is 

observed that an increase in porosity parameter causes an increase in velocity.  Kimeu. B. [6] Investigation of 

Hydro Magnetic Steady Flow between Two Infinite Parallel Vertical Porous Plates shows that as the suction 

velocity parameter increases the velocity decreases. Mayaka et al [7] studied MHD Turbulent flow in a porous 

medium with Hall currents, Joule’s heating and mass transfer. He noted that the mass transfer velocity 

accelerates all the flow variables. This is because increased injection rates enhance transfer from the plate to the 

rest of the fluid which leads to enhanced boundary layers. 

 

Dawit et al  [8] examined turbulent hydro magnetic flow with radiative heat over a moving vertical plate in a 

rotating system and found that increases the secondary skin friction while an increase in the Ohmic heating, 

thermal radiation and Prandtl number decreases the secondary skin friction at the plate surface. More research 

has been carried out but none of them have comprehensively considered turbulent hydro magnetic flow with 

radiative heat past a moving vertical porous plate in a rotating system. This prompted the study. 
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II. MATHEMATICAL ANALYSIS 

Consider turbulent flow of an incompressible fluid with radiative heat past a moving vertical porous plate in a 

rotating system in presence of a uniform magnetic field Bo. The fluid and the plate are moving upwards in the x-

direction while the z-axis is horizontal and perpendicular to the x-y plane as shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometrical representation 

Initially the temperature of the plate and the fluid are assumed to be equal. At time t>0, the plate begins to move 

impulsively along the x-direction with initial velocity 0U  while its temperature is maintained at a temperature 

wT  which is higher than that of the surrounding T  . From the above geometry of problem, hydro magnetic 

flow of incompressible, viscous electrically conducting fluid in a rotating frame with radiative heat and Hall 

effects the equations governing the momentum along the x-direction, y-direction and the energy equation takes 

the form 

Momentum equation in the x-direction 
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Momentum equation in the y-direction 
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Turbulent modeling 

Turbulent flows are flows characterized by rapid fluctuations in flow variables with respect to time and space. 

Many approaches can be employed to account for turbulence in flow but this paper considers Reynolds 

Averaged Navier Stokes equations approach to transform equations governing the lamina flow into turbulent 

flows. Under this approach, a general variable say   for a given turbulent flow at a given instant is given 
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'   where  is the mean value that lays the basis of studying spatial variation while ' is the 

fluctuating component. Using this averaging technique together with Boussinesq approximations and turbulent 

mixing length hypothesis, the equations governing the turbulent flow takes the form; 
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From the assumptions made, the boundary conditions  

wTTvUu  0,0     at oz       

 

 

(7)

 

 TTvu 0,0  at    z         

(8)

    

Transforming equations 4-6 and the boundary conditions into their corresponding dimensionless forms yields; 
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The boundary conditions in their non dimensional form are: 

 

 

1,0,1  TVU     at o
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00,0  TVU  at 
        

(13) 

Solution procedure 

The partial derivatives of TandVU ,  are expressed using finite difference approximation. The equations 

in finite differences form are re-arranged to yield the following;  

   
 

 
 

   

 

    

 
    

 

 

 

 
 

)
212

22
1/()

212

2
2

48
2

22
(

21

1

1

1

3

2

2

1

2

1

11

1

1

1

11

1

1

1

3

2
2

11

1

1

1

12

2

11

1

1

1

1

2

1

1

1

1

1

tX

m

tM
UUUU

tNttWo
U

tX
VVmU

m

tM

TT
tGr

UUUUUUUUU

tN
UUUU

tN
UUUUU

t
VVtRUUU

tWo
UU

k

i

k

i

k

i

k

i

ik

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

ik

i

k

i

k

i

k

i
ik

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i



































































































































 

   

 
 

 
 

 

 
  

 
    

 

 

 
 

 
)

2122

2
1/()

212

2
4

8
2

2

2
(

21

1

1

1

3

2

2

1

2

11

1

1

1

11

1

1

1

3

2

2

11

1

1

1

12

2

11

1

1

1

12

1

1

1

1

1

tX

m

tM
VVVV

tN

ttWo
V

tX
VUUm

m

tM

VVVVVVVVV
tN

VVVV
tN

VVVVV
t

UUtRVVV
tWo

VV

k

i

k

i

k

i

k

i
i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

i

k

i

k

i

k

i

k

i

ik

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i






























































































































 

 
 

 

 
  

 

 
  

 

 
  

 
    

 
     

 

 

 
  )

2Pr2

Pr2
1/()

14

4

22
Pr8

2
Pr4

Pr42

2
Pr22

(

1

1

1

1

3

2

2

2121

22

2

1

1

1

12

1

1

1

1

2

11

1

1

11

111

1

1

1

13

2

11

1

1

1

11

1

1

1

3

2

11

1

1

1

11

1

1

1

2

2

11

1

1

1

121

1

1

1

tNr
UUUU

t

tN

ttWo
VVmUU

m

tMEc

VVVVUUUU
tEc

UUUUUUTTTT
t

tN

TTTTTUUUU
t

tN

TTTTUUUU
t

tN
T

tNr

TTTTT
t

TTT
Wo

TT

k

i

k

i

k

i

k

i

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

ik

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i














































































































































































 



 

 

 

 

 

ISSN: 2319-5967 

ISO 9001:2008 Certified 
International Journal of Engineering Science and Innovative Technology (IJESIT) 

Volume 4, Issue 5, September 2015 

78 

subject to the conditions: 

                          010,00,,10,  tTandVU   

                  
       01,00,0,1,0  kkTandkVkU   

                  
      00,0,,0,  kkTandkVkU    

The solution is generated using a computer code written in MATLAB software to produce the results shown.  

III. RESULTS AND DISCUSSION 

 

Fig 1 

 

Fig 2 

 

fig 3 
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fig 6 
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fig 7 

 

fig 8 

The figures 1 and 2 show that increase in permeability parameter leads to a decrease in magnitude of both the 

primary and secondary velocity profiles of the flow. Figure.3 shows increase in permeability parameter results 

to a decrease in temperature of the fluid. Increase in permeability parameter increases the porosity of the plate. 

Increased porosity reduces the acceleration of the flow and in turn primary and secondary velocities decreases. 

Reduced acceleration decreases the movement of particles (convection) and thus reduces transfer of heat and 

temperature leading to decrease in primary velocity profiles and temperature profiles. Radiation emitted by a 

body is due to thermal agitation of its molecules. Heat loss leads to temperature decrease and thus thermal 

boundary layer of the fluid reduces. Reduced temperature of the fluid flow due to radiation leads to decreased 

kinetic energy of the fluid particles. This is reflected by reduction of the velocity profiles of the fluid. Increase in 

the magnitude of the Injection parameter 0w  leads to an increase in the velocity and temperature profiles 

respectively.  

 

Figures 4, 5 and 6 show; increase in Eckert number results to increase in both primary and secondary velocity 

profiles. Increase in Eckert number may be attributed to increased kinetic energy when the fluid absorbs more 

heat energy that is released from the internal viscous forces. Increase in temperature of the fluid also increases 

the increases the movement (kinetic energy) of the fluid particles which results to increase in primary as well as 

secondary velocity profiles of the fluid. Increase in Hall parameter m enhances both primary and secondary 

velocity profiles. This is due to the fact that the effective conductivity decreases with the increase in Hall 

parameter which reduces the magnetic damping force hence the increase in velocity. From figure 4 increase in 

the value of rotation R results to decrease in the magnitude of primary velocity profiles but increase in 

secondary velocity profiles. This is because increase in rotation parameter implies that angular velocity is 

increased which more or less disorients and retards the fluid motion decreasing the fluid primary velocity while 

increasing secondary velocity.  

 

Figures 7 and 8 show variation of velocity and temperature profiles with change in local Grashoff number Gr. In 

figure 7 it is noted that the momentum layer thickness is enhanced by cooling (Gr>0) of the plate by convection 

currents due to buoyancy forces and velocity decreases with heating of the plate by convectional currents 

(Gr>0). Figure 8 shows that the fluid temperature within the boundary layer regime is enhanced by plate cooling 

while the heating of the plate by buoyancy force decreases the boundary layer thickness. This can be explained 

by the fact that the heat is transferred from the plate to the fluid by buoyancy force during cooling leading to a 

rise in the mean temperature. Figures 7 and 8 shows that primary and secondary velocity profiles diminish with 

increase in magnetic parameter while the thermal boundary layer is enhances by temperature increase. 

Introduction of strong magnetic field normal to the direction of electrically conducting fluid results to 

emergence of a resistive force to not only the main flow but also secondary flow. This resistive force called 

Lorentz force resists the flow of fluid resulting to deceleration of the fluid and thus the fluid velocity profiles 

reduces. Figure 8 shows that increase in magnetic parameter M results to slight rise in temperature of the fluid. 

The increased fluid temperature results to non- uniform changes in fluid properties such as fluid density and 

conductivity. Thus energy is converted from electrical power supply to the fluid or any other medium that is in 

thermal contact. This heat is known as joules heating. 



 

 

 

 

 

ISSN: 2319-5967 

ISO 9001:2008 Certified 
International Journal of Engineering Science and Innovative Technology (IJESIT) 

Volume 4, Issue 5, September 2015 

80 

IV. CONCLUSION 

Numerical investigation of the combined effects of radiation, magnetic fields, viscosity, porosity and rotation 

past a moving vertical porous plate in a rotating system has been carried out. The results obtained more or less 

agree with those obtained from earlier published works by other authors. This proves the validity of the 

developed governing equations as well as the method of solution. The future scope of work can factor in ion slip 

currents, variable magnetic field and variable suction.  
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Nomeclature 

Roman Symbol                                 Quantity                                                                          

Grᶿ : Local temperature Grashoff  number  

m: Hall parameter 

M: Magnetic parameter 

qr: Radiative heat flux, [Wm
-2

] 

X: Permeability parameter 

R: Rotation parameter 

K: Thermal conductivity of porous medium, [wm
-1

K
-1

] 

Ui : Velocity tensor, [ms
-1

] 

k :Darcy permeability, [m
2
] 

Pr:  Prandtl number 

Ec: Eckert number 

ρ: Fluid density, [kgm
-3

] 

μ: coefficient of viscosity, [kgm
-1

s] 

ϕ: Viscous dissipation functions, [ s
-1

] 

Ω: Angular velocity, [s
-1

] 
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